netty是一个提供 asynchronous event-driven (异步事件驱动)的网络应用框架,是一个用以快速开发高性能、高可靠性协议的服务器和客户端。换句话说,Netty 是一个 NIO 客户端服务器框架,使用它可以快速简单地开发网络应用程序,比如服务器和客户端的协议。Netty 大大简化了网络程序的开发过程比如 TCP 和 UDP 的 socket 服务的开发。 “快速和简单”并不意味着应用程序会有难维护和性能低的问题,Netty 是一个精心设计的框架,它从许多协议的实现中吸收了很多的经验比如 FTP、SMTP、HTTP、许多二进制和基于文本的传统协议.因此,Netty 已经成功地找到一个方式,在不失灵活性的前提下来实现开发的简易性,高性能,稳定性。推荐了解黑马程序员java培训课程。
围绕Netty 的核心架构,通过简单的示例带你快速入门。当你读完本章节,你马上就可以用 Netty 写出一个客户端和服务器。
开始之前
在开始之前我们先说明下开发环境,我们使用ne这个版本,jdk使用1.8及以上版本。
<dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.1.30.Final</version> </dependency>
先来个丢弃服务
世上最简单的协议不是'Hello, World!' 而是 DISCARD(丢弃)。这个协议将会丢掉任何收到的数据,而不响应。 为了实现 DISCARD 协议,你只需忽略所有收到的数据。让我们从 handler (处理器)的实现开始,handler 是由Netty 生成用来处理 I/O 事件的。
先创建一个处理器
package com.ne; import io.ne; import io.ne; import io.ne; /** * 处理服务端 channel. */ public class DiscardServerHandler extends ChannelInboundHandlerAdapter { // (1) @Override public void channelRead(ChannelHandlerContext ctx, Object msg) { // (2) Sy(msg); // 默默地丢弃收到的数据 ((ByteBuf) msg).release(); // (3) } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { // (4) // 当出现异常就关闭连接 cau(); c(); } }
(1) DiscardServerHandler 继承自 ChannelInboundHandlerAdapter ,这个类实现了ChannelInboundHandler接口,ChannelInboundHandler提供了许多事件处理的接口方法,然后你可以覆盖这些方法。现在仅仅只需要继承ChannelInboundHandlerAdapter 类而不是你自己去实现接口方法。
(2)这里我们覆盖了chanelRead() 事件处理方法。每当从客户端收到新的数据时,这个方法会在收到消息时被调用,这个例子中,收到的消息的类型是 ByteBuf。
(3)为了实现DISCARD协议,处理器不得不忽略所有接收到的消息。ByteBuf是一个引用计数对象,这个对象必须显示地调用release() 方法来释放。请记住处理器的职责是释放所有传递到处理器的引用计数对象。通常, channelRead() 方法的实现就像下面的这段代码:
@Override public void channelRead(ChannelHandlerContext ctx, Object msg) { try { // Do something with msg } finally { Re(msg); } }
(4)exceptionCaught()事件处理方法是当出现Throwable对象才会被调用,即当Netty由于IO错误或者处理器在处理事件时抛出的异常时。在大部分情况下,捕获的异常应该被记录下来并且把关联的 channel 给关闭掉。然而这个方法的处理方式会在遇到不同异常的情况下有不同的实现,比如你可能想在关闭连接之前发送一个错误码的响应消息。
编写服务端代码
目前为止一切都还不错,我们已经实现了DISCARD服务器的一半功能,剩下的需要编写一个main()方法来启动服务端的DiscardServerHandler 。
package com.ne; import io.ne; import io.ne; import io.ne; import io.ne; import io.ne; import io.ne; import io.ne; import io.ne; /** * 丢弃任何进入的数据 */ public class DiscardServer { private int port; public DiscardServer(int port) { = port; } public void run() throws Exception { EventLoopGroup bossGroup = new NioEventLoopGroup(); // (1) EventLoopGroup workerGroup = new NioEventLoopGroup(); try { ServerBootstrap b = new ServerBootstrap(); // (2) b.group(bossGroup, workerGroup) .channel) // (3) .childHandler(new ChannelInitializer<SocketChannel>() { // (4) @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new DiscardServerHandler()); } }) .option, 128) // (5) .childOption, true); // (6) // 绑定端口,开始接收进来的连接 ChannelFuture f = b.bind(port).sync(); // (7) // 等待服务器 socket 关闭 。 // 在这个例子中,这不会发生,但你可以优雅地关闭你的服务器。 f.channel().closeFuture().sync(); } finally { workerGroup.shutdownGracefully(); bo(); } } public static void main(String[] args) throws Exception { int port; if > 0) { port = In(args[0]); } else { port = 8080; } new DiscardServer(port).run(); } }
1、NioEventLoopGroup是用来处理I/O操作的多线程事件循环器,Netty提供了许多不同的EventLoopGroup的实现用来处理不同的传输。在这个例子中我们实现了一个服务端的应用,因此会有2个 NioEventLoopGroup 会被使用。第一个经常被叫做‘boss’,用来接收进来的连接。第二个经常被叫做‘worker’,用来处理已经被接收的连接,一旦‘boss’接收到连接,就会把连接信息注册到‘worker’上。如何知道多少个线程已经被使用,如何映射到已经创建的 Channel上都需要依赖于 EventLoopGroup 的实现,并且可以通过构造函数来配置它们的关系。
2、ServerBootstrap是一个启动NIO服务的辅助启动类。你可以在这个服务中直接使用 Channel,但是这会是一个复杂的处理过程,在很多情况下你并不需要这样做。3、这里我们指定使用NioServerSocketChannel类来举例说明一个新的 Channel 如何接收进来的连接。
4、这里的事件处理类经常会被用来处理一个最近的已经接收的Channel。ChannelInitializer是一个特殊的处理类,他的目的是帮助使用者配置一个新的Channel。也许你想通过增加一些处理类比如DiscardServerHandler 来配置一个新的 Channel 或者其对应的ChannelPipeline 来实现你的网络程序。当你的程序变的复杂时,可能你会增加更多的处理类到 pipline 上,然后提取这些匿名类到最顶层的类上。
5、你可以设置这里指定的Channel实现的配置参数。我们正在写一个TCP/IP的服务端,因此我们被允许设置socket的参数选项比如tcpNoDelay 和 keepAlive。请参考 ChannelOption 和详细的ChannelConfig实现的接口文档以此可以对ChannelOption 的有一个大概的认识。
6、你关注过 option() 和 childOption() 吗?option() 是提供给NioServerSocketChannel 用来接收进来的连接。childOption() 是提供给由父管道 ServerChannel接收到的连接,在这个例子中也是 NioServerSocketChannel。
7、我们继续,剩下的就是绑定端口然后启动服务。这里我们在机器上绑定了机器所有网卡上的8080端口。当然现在你可以多次调用bind() 方法(基于不同绑定地址)。恭喜!你已经熟练地完成了第一个基于 Netty 的服务端程序。
查看收到的数据
现在我们已经编写出我们第一个服务端,我们需要测试一下它是否真的可以运行。最简单的测试方法是用telnet命令。例如,你可以在命令行上输入telnet localhost 8080或者其他类型参数。
在telnet终端中输入任意字符,服务端向控制台输出信息。证明服务端接收到客户端发送的消息了。但是我们并不能看到服务端接收到了什么东西,我们可以把channelRead方法改成如下内容:
@Override public void channelRead(ChannelHandlerContext ctx, Object msg) { // (2) //Sy(msg); ByteBuf message = (ByteBuf) msg; Sy)); // 默默地丢弃收到的数据 ((ByteBuf) msg).release(); // (3) }
这样控制台就可以看到客户端发送的数据了。
写个应答服务器
到目前为止,我们虽然接收到了数据,但没有做任何的响应。然而一个服务端通常会对一个请求作出响应。让我们学习怎样在ECHO协议的实现下编写一个响应消息给客户端,这个协议针对任何接收的数据都会返回一个响应。
和 discard server 唯一不同的是把在此之前我们实现的channelRead()方法,返回所有的数据替代打印接收数据到控制台上的逻辑。因此,需要把channelRead()方法修改如下:
@Override public void channelRead(ChannelHandlerContext ctx, Object msg) { c(msg); // (1) c(); // (2) }
(1)ChannelHandlerContext对象提供了许多操作,使你能够触发各种各样的I/O事件和操作。这里我们调用了write(Object) 方法来逐字地把接受到的消息写入。请注意不同于DISCARD的例子我们并没有释放接受到的消息,这是因为当写入的时候 Netty 已经帮我们释放了。
(2)c(Object)方法不会使消息写入到通道上,它被缓冲在了内部,你需要调用 c() 方法来把缓冲区中数据强行输出。或者你可以用更简洁的cxt.writeAndFlush(msg)以达到同样的目的。
如果你再一次运行telnet命令,你会看到服务端会发回一个你已经发送的消息。
喜欢记得关注一下哦