您的位置 首页 > 数码极客

能被9整除的数的特征 能被11整除的数的特征?

数的整除

数的整除问题,内容丰富,思维技巧性强。它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

 一、基本概念和知识

1.整除——约数和倍数

例如:15÷3=5,63÷7=9

一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

 2.数的整除性质

性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),

并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

  性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,

那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

 3.数的整除特征

①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?

解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。

再例如:判断13574是否是11的倍数?

解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?

解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。

再例如:判断3546725能否被13整除?

解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.

能被30以下质数整除的数的特征

大家知道,一个整数能被2整除,那么它的个位数能被2整除;反过来也对,也就是一个数的个位数能被2整除,那么这个数本身能被2整除。因此,我们说“一个数的个位数能被2整除”是“这个数能被2整除”的特征。在这一讲中,我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的特征。

为了叙述起见,我们把讨论的数N记为:

我们已学过同余,用mod 2表示除以2取余数,有公式:

① N≡a0(mod 2)

② N≡a1a0(mod 4)

③ N≡a2a1a0(mod 8)

④ N≡a3a2a1a0(mod 16)

这几个公式表明一个数被2(4,8,16)整除的特性,而且表明了不能整除时,如何求余数。

此外,被3(9)整除的数的特征为:它的各位数字之和可以被3(9)整除。我们借用同余记号及一些运算性质来重新推证一下。如(mod 9),如果:

N= a3a2a1a0 = a3×1000+a2×100+a1×10+a0

= a3×(999+1)+a2×(99+1)+a1×(9+1)+a0

= (a3+a2+a1+a0)+(a3×999+a2×99+a1×9)

那么,等式右边第二个括号中的数是9的倍数,从而有

N≡a3+a2+a1+a0(mod 9)

对于mod 3,理由相仿,从而有公式:

⑤ N≡(…+a3+a2+a1+a0) (mod 9)

N≡(…+a3+a2+a1+a0) (mod 3)

责任编辑: 鲁达

1.内容基于多重复合算法人工智能语言模型创作,旨在以深度学习研究为目的传播信息知识,内容观点与本网站无关,反馈举报请
2.仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证;
3.本站属于非营利性站点无毒无广告,请读者放心使用!

“能被9整除的数的特征,能被11整除的数的特征,能被9整除的数的特征和原因”边界阅读