上面提到的许多量子技术军事应用听起来非常乐观,一些应用摘自各种报告和报纸或杂志文章,其中作者可能高估了从实验室到战场的量子技术转移,或者受到了量子技术炒作的影响[288]。当话题涉及国家安全或国防时,避免夸大预期尤为重要。
上述量子技术军事应用是基于公共领域的最新研究的,并辅以各种有关国防应用的报道、报纸或杂志文章。由于没有这些技术的公开信息,因此没有对这几种技术的可行性提出关键意见。在这些情况下,读者应该更加谨慎和挑剔,直到有更详细的研究可用。
大型国防公司和国家国防实验室多年来一直有量子研究和开发项目,然而,只有一些详细的信息是公开交流的。
对于许多提到的量子技术,迄今为止只提供了实验室概念证明,决定量子技术能否在实验室之外广泛应用的决定性因素是组件微型化和对干扰的敏感性,这些改进不能以牺牲灵敏度、分辨率和功能为代价,实际部署的另一个决定性因素是技术的价格。
总之,考虑到量子技术研究和支持系统的进步,如过去几年中激光和低温冷却微型化,有理由对未来量子技术的军事应用持乐观态度,而不是悲观态度(从军事或政府行为者的角度)。我们需要仔细考虑作战部署中的实际能力,看看它们是否满足要求,以及性价比是否足以证明采购和部署的合理性。
用于军事应用的量子技术的开发、获取和部署将带来新的挑战。量子战争的概念将对军事战略、战术和理论、伦理和裁军活动以及技术实现和部署提出新的要求,应开展研究,以了解量子技术发展中产生的问题、影响、威胁和选择,而不仅仅是军事应用。
7.1 军事后果和挑战
军事应用中的量子技术有可能提高现有能力,例如提供更精确的导航、超安全通信或先进的ISTAR和计算能力。总的来说,量子战争将需要更新、修改或创造新的军事理论、军事场景和计划,以开发和获取量子时代的新技术和武器。
在此之前,需要制定技术政策和战略,以应对各个参与者的战略雄心。例如,国家技术政策和战略应包括国家量子技术资源(大学、实验室和公司)和市场的研究、发展状况和可行性研究以及军事和安全威胁和潜在评估。
监测量子技术的演变和适应性对于避免邻国或潜在敌对国家的技术意外是至关重要的。对一些国家来说,即使量子技术超出了它们的财力、研究或技术能力,量子战监控也是必不可少的。因此,所有的现代军队都应该对量子战争可能带来的影响感兴趣。
国家贸易和出口政策也很重要。例如,欧盟已经宣布量子计算是一项具有全球战略重要性的新兴技术,并正在考虑对名为“地平线欧洲”的研究项目进行严格的访问。此外,中国禁止出口密码技术,包括量子密码。
另一个主题是与盟友仔细交流重要的量子优势,尤其是在量子ISTAR和量子网络能力方面,这可能会泄露军事机密,如机密文件,核潜艇位置或地下设施。力量平衡的破坏会让盟友以及中立或敌对的玩家感到不安。
7.2 和平与道德的后果和挑战
迄今为止,第5节中所述的量子技术的军事应用并没有引进新的武器,即使它们使现有的军事技术更加先进;例如,通过开发更精确的传感和导航,新的计算能力和更强的信息安全。然而,量子技术,尤其是军事应用,对世界和平是好是坏的问题是相关的。
已经出现了各种要求量子计算伦理准则的呼声,提到了很多伦理问题,如人类DNA操纵、为战争和入侵性人工智能创造新材料。
尽管量子技术不会产生新的武器,但它们对现有军事技术的改进将提高这种能力,缩短攻击、警告和决策的时间。因此,即使在降低个人风险的同时,量子技术也能使使用武力的可能性更大,从而使战争更有可能。
量子技术等通用两用技术的预防性军备控制将更加困难,因为它们也可用于民用,如医学量子传感。人们将其与纳米技术进行了类比,出口管制以防止或减缓其他国家或非国家组织的扩散和军事用途,是试图减少量子技术构成的任何威胁的最有可能的方式。
具体来说,量子计算研发非常昂贵。然而,我们的目标是开发一种能够简单可靠地生产量子比特的技术,这可以为技能较少的参与者带来更便宜、分布更广、更容易获得的技术,这是即将出现问题的军事技术的一个特点。
7.3 技术后果和挑战
将成功的实验室概念验证转化为真正的“外部”应用面临许多技术和工艺挑战,例如微型化和可操作性,但不能以牺牲实验室实现的灵敏度和分辨率为代价,此外,还有其他相关的技术挑战。
其中一个挑战可能是量子劳动力。量子劳动力不需要由物理学家或拥有博士学位的科学家组成,然而,他们应该是具有量子信息科学知识和量子技术概述的量子工程师,能够理解并能够处理和评估来自量子传感器、计算机和通信的输出数据。目前,一个现有的量子生态系统正在持续增长,这个生态系统将需要越来越多的量子劳动力。这需要培训和教育新的量子工程师和专家,也就是说,越来越多的大学开设量子课程,越来越多的学生选修量子课程。此外,让这些人去军队工作会更加困难,因此,量子信息和量子技术的基本原理也应该作为现代军队的军事学院课程的一部分,量子技术将部署在这些军事学院。
另一个技术挑战是巨大的数据量。量子技术,通过所有的量子传感器、量子成像、量子通信和计算,将产生大量经典和量子数据,这些数据将增加对数据传输、处理和评估的要求,在规划C4ISR和量子基础设施时,应该考虑这些要求。
最后的挑战将是标准化。标准化过程对于不同制造商生产的设备的互操作性非常重要。除了统一接口和通信协议,标准化过程还可以包括安全验证,例如在后量子密码标准化过程。在量子网络的情况下,各种连接的设备(如节点、中继器、交换机、光纤通道和开放空间通道)是可以预期的,开发和实施一些允许成功传输量子信息的标准是很重要的。
量子技术是一个新兴的技术领域,它利用对单个量子的操纵和控制来实现多种应用,具有潜在的破坏性,其中许多应用是双重用途的,或者直接用于军事目的。然而,从TRL 1(观察到的基本原理)到TRL 6(在相关环境中展示的技术),各个量子技术都在技术研究实验室用于军事用途。
用于军事应用的量子技术不仅将提供改进和新的能力,还将需要制定新的战略、战术和政策,评估对全球和平与安全的威胁,并确定道德伦理问题,所有这些都被称为“量子战争”。
在本报告中,描述了不同TRL的各种量子技术,集中在国防部门的可能应用或部署。由于从实验室到现实世界应用的过渡尚未实施或正在进行中,量子技术部署的精确预测是不可能的,这引发了一些问题,比如我们是否能够提出一个解决方案,与通常便宜得多且通常已经投入使用的经典系统相比,它提供了真正的量子优势。尽管对量子技术可能的军事应用的描述听起来非常乐观,但人们应该警惕量子炒作,并关注量子技术在军事应用中的实际部署所面临的挑战。
量子技术有望产生战略性的远期影响。然而,影响军事和国防力量的技术意外的可能性相当低,避免意外的最好方法是发展量子技术知识和监控量子技术的发展和就业。谨慎对待量子技术,会起到量子保险的作用。
报告原文:
参考文献:
1. Lind W et al. The changing face of war: into the fourth generation. In: Marine corps gazette. 1989.
2. Lind WS. Understanding fourth generation war. Mil Rev. 2004;84:12.
3. Affffan Ahmed S, Mohsin M, Muhammad Zubair Ali S. Survey and technological analysis of laser and its defense applications. Defence Technology (2020). ISSN 2214-9147.
.
4. Dowling JP, Milburn GJ. Quantum technology: the second quantum revolution. Philos Trans R Soc, Math Phys Eng Sci. 2003;
361(1809):1655–74. .
5. Till S, Pritchard J. UK quantum technology landscape 2016. DSTL/PUB098369, UK National Quantum Technologies Programme. 2016.
6. Davies A, Kennedy P. Special report - from little things: quantum technologies and their application to defence. ASPI (Australian Strategic Policy Institute); 2017.
7. Wolf SA et al. Overview of the status of quantum science and technology and recommendations for the DoD. Institute for defense analyses; 2019.
8. Andas H. Emerging technology trends for defence and security. FFI-RAPPORT. Apr. 2020.
9. Inglesant P, Jirotka M, Hartswood M. Responsible Innovation in Quantum Technologies applied to Defence and National Security. NQIT (Networked Quantum Information Technologies); 2018.
10. ATARC Quantum Working Group. Applied quantum computing for today’s military. White paper. May 2021.
11. Australian Army. Army Quantum Technology Roadmap. Apr. 2021.
12. Sayler KM. Defense primer: quantum technology. IF11836. June 2021.
13. Middleton A, Till S, Steele M. Quantum Information Processing Landscape 2020: Prospects for UK Defence and
Security. DSTL/TR121783. June 2020.
14. Biercuk MJ. Read before pontifificating on quantum technology. War on the Rock. 2020. URL:
(visited on 02/27/2021).
15. Perani G. Military technologies and commercial applications: public policies in NATO countries. July 1997.
16. Nouwens M, Legarda H. China’s pursuit of advanced dual-use technologies. IISS. Dec. 2018. URL:
(visited on 09/30/2010).
17. Davidson A. A new dimension of war: the quantum domain. Canadian Forces College. 2020.
18. Park JL. The concept of transition in quantum mechanics. In: Foundations of physics. 1970. p. 23–33.
.
19. Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary edition. Cambridge: Cambridge University Press; 2010. ISBN 9781139495486.
20. Mermin ND. Quantum computer science: an introduction. Cambridge: Cambridge University Press; 2007. ISBN 9781139466806.
21. Jordan S. Quantum Algorithm Zoo.
URL: (visited on 09/13/2021).
22. Cross AW, et al. Validating quantum computers using randomized model circuits. Physical Review A. 2019;100(3).
.
23. Fowler AG, et al. Surface codes: towards practical large-scale quantum computation. Physical Review A. 2012;86(3).
.
24. National Academies of Sciences, Engineering, and Medicine et al. Quantum Computing: Progress and Prospects. National Academies Press, 2019. ISBN 9780309479721. .
25. Arute F et al. Quantum supremacy using a programmable superconducting processor. Nature.
2019;574(7779):505–10. .
26. Gambetta J. IBM’s Roadmap For Scaling Quantum Technology. IBM. 2020. URL: (visited on 10/07/2020).
27. Finke D. Google Goal: Build an Error Corrected Computer with 1 Million Physical Qubits by the End of the Decade. Quantum Computing report. 2020. URL:
google-goal-error-corrected-computer-with-1-million-physical-qubits-by-the-end-of-the-decade/ (visited on 10/07/2020).
28. Mosca M, Piani M. Quantum threat timeline. Global Risk Institute; 2019.
29. Simulating Molecules using VQE. Qiskit Textbook. URL:
(visited on 01/25/2021).
30. Feynman RP. Simulating physics with computers. Int J Theor Phys. 1982;21(6):467–88. .
31. Reiher M et al. Elucidating reaction mechanisms on quantum computers. In: Proceedings of the national academy of sciences. vol. 114. 2017. p. 7555–60. .
32. Peruzzo A, et al. A variational eigenvalue solver on a photonic quantum processor. Nature Communications. 2014;5(1).
.
Krelina EPJ Quantum Technology (2021) 8:24 Page 46 of 53
33. McClean JR et al. The theory of variational hybrid quantum-classical algorithms. New J Phys. 2016;18(2):023023.
.
34. Arute F et al. Hartree-Fock on a superconducting qubit quantum computer. Science. 2020;369(6507):1084–9.
.
35. Gidney C, Ekerå M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum. 2021;5:433.
.
36. Häner T et al. Improved quantum circuits for elliptic curve discrete logarithms. In: Post-quantum cryptography. Berlin: Springer; 2020. p. 425–44.
. 2001.09580 [quant-ph].
37. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. Los Alamitos: IEEE Comput. Soc.; 1994.
.
38. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing - STOC ’96. New York: ACM; 1996. .
39. Bernstein DJ. Grover vs. McEliece. In: Post-quantum cryptography. Berlin: Springer; 2010. p. 73–80.
.
40. Simon DR. On the power of quantum computation. In: Proceedings 35th annual symposium on foundations of computer science. Los Alamitos: IEEE Comput. Soc.; 2002.
.
41. Kaplan M, et al. Breaking Symmetric Cryptosystems using Quantum Period Finding. 2016. 1602.05973 [quant-ph].
42. Bonnetain X, Jaques S. Quantum Period Finding against Symmetric Primitives in Practice. 2020. 2011.07022 [quant-ph].
43. Kaplan M et al. Breaking symmetric cryptosystems using quantum period fifinding. In: Advances in cryptology - CRYPTO 2016. Berlin: Springer; 2016. p. 207–37.
.
44. Shenvi N, Kempe J, Whaley KB. Quantum random-walk search algorithm. Physical Review A. 2003;67(5).
.
45. Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm. 2014. 1411.4028 [quant-ph].
46. Glover F, Kochenberger G, Du Y. A Tutorial on Formulating and Using QUBO Models. 2019. 1811.11538 [cs.DS].
47. Wiebe N, Braun D, Lloyd S. Quantum Algorithm for Data Fitting. Physical Review Letters. 2012;109(5).
.
48. Brandao FGSL, Svore K. Quantum Speed-ups for Semidefifinite Programming, 2017. 1609.05537 [quant-ph].
49. Barak B, et al. Beating the random assignment on constraint satisfaction problems of bounded degree. 2015.
1505.03424 [cs.CC].
50. Harrow AW, Hassidim A, Lloyd S. Quantum Algorithm for Linear Systems of Equations. Physical Review Letters.
2009;103(15). .
51. Scherer A, et al. Concrete resource analysis of the quantum linear-system algorithm used to compute the
electromagnetic scattering cross section of a 2D target. Quantum Information Processing. 2017;16(3).
.
52. Aaronson S. Read the fifine print. Nat Phys. 2015;11(4):291–3. .
53. Blencowe M. Quantum RAM. Nature. 2010;468(7320):44–5. .
54. Biamonte J et al. Quantum machine learning. Nature. 2017;549(7671):195202.
.
55. Dunjko V, Taylor JM, Briegel HJ. Quantum-Enhanced Machine Learning. Physical Review Letters. 2016;117(13).
.
56. Wittek P. Quantum machine learning: what quantum computing means to data mining. Amsterdam: Elsevier; 2016. ISBN 9780128100400.
57. Dunjko V, Wittek P. A non-review of quantum machine learning: trends and explorations. Quantum Views. 2020;4:32.
.
58. Havlicek V et al. Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567(7747):209–12.
.
59. Bakhtiari Ramezani S et al. Machine learning algorithms in quantum computing: a survey. In: 2020 international joint
conference on neural networks (IJCNN). New York: IEEE; 2020. .
60. Gisin N, Thew R. Quantum communication. Nat Photonics. 2007;1(3):165–71.
.
61. Wehner S, Elkouss D, Hanson R. Quantum Internet: a vision for the road ahead. Science. 2018;362(6412):eaam9288.
.
62. Yin J et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356(6343):1140–4.
.
63. Yin J, et al. Satellite-to-Ground Entanglement-Based Quantum Key Distribution. Physical Review Letters.
2017;119(20). .
64. Liu H-Y, et al. Optical-Relayed Entanglement Distribution Using Drones as Mobile Nodes. Physical Review Letters.
2021;126(2). .
65. Pogorzalek S, et al. Secure quantum remote state preparation of squeezed microwave states. Nature Communications. 2019;10(1). .
66. Bouwmeester D et al. Experimental quantum teleportation. Nature. 1997;390(6660):575–9. .
67. Braunstein SL, Pirandola S. Side-Channel-Free Quantum Key Distribution. Physical Review Letters. 2012;108(13).
.
68. Lo H-K, Curty M, Qi B. Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters. 2012;108(13). .
69. Broadbent A, Fitzsimons J, Kashefifi E. Universal blind quantum computation. In: 2009 50th annual IEEE symposium
on foundations of computer science. New York: IEEE; 2009. .
70. Fitzsimons JF. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Information. 2017;3(1). .
71. Chuang IL. Quantum algorithm for distributed clock synchronization. Phys Rev Lett. 2000;85(9):2006–9.
EPJ Quantum Technology (2021) 8:24 Page 47 of 53
72. Damgård I et al. Secure identifification and QKD in the bounded-quantum-storage model. Theor Comput Sci.
2014;560:12–26. .
73. Unruh D. Quantum position verifification in the random oracle model. In: Advances in cryptology - CRYPTO 2014. Berlin: Springer; 2014. p. 1–18. .
74. Crépeau C, Gottesman D, Smith A. Secure multi-party quantum computation. In: Proceedings of the thiry-fourth annual ACM symposium on theory of computing - STOC ’02. New York: ACM; 2002.
.
75. Cuomo D, Caleffiffiffi M, Cacciapuoti AS. Towards a distributed quantum computing ecosystem. IET Quantum Communication. 2020;1(1):3–8. .
76. Ben-Or M, Hassidim A. Fast quantum byzantine agreement. In: Proceedings of the thirty-seventh annual ACM symposium on theory of computing - STOC 05. New York: ACM; 2005. .
77. Proctor TJ, Knott PA, Dunningham JA. Multiparameter Estimation in Networked Quantum Sensors. Physical Review Letters. 2018;120(8). .
78. Xia Y, et al. Quantum-Enhanced Data Classifification with a Variational Entangled Sensor Network. Physical Review X. 2021;11(2). .
79. Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems and signal processing. vol. 175. New York: IEEE; 1984.
80. Ekert AK. Quantum cryptography based on Bell’s theorem. Phys Rev Lett. 1991;67(6):661–3. .
81. Brassard G et al. Limitations on practical quantum cryptography. Phys Rev Lett. 2000;85(6):1330–3.
.
82. Jain N et al. Trojan-horse attacks threaten the security of practical quantum cryptography. New J Phys. 2014;16(12):123030. .
83. Bernstein DJ. Introduction to post-quantum cryptography. In: Post-quantum cryptography. Berlin: Springer; 2009. p. 1–14. .
84. Hoffffstein J, Pipher J, Silverman JH. NTRU: a ring-based public key cryptosystem. In: Lecture notes in computer science. Berlin: Springer; 1998. p. 267–88. .
85. De Feo L, Jao D, Plût J. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology. 2014;8(3). .
86. Merkle RC. A certifified digital signature. In: Advances in cryptology — CRYPTO’ 89 proceedings. New York: Springer; 2001. p. 218–38. .
87. Matsumoto T, Imai H. Public quadratic polynomial-tuples for effiffifficient signature- verifification and message-encryption. In: Lecture notes in computer science. Berlin: Springer; 1988. p. 419–53.
.
88. McEliece RJ. A public-key cryptosystem based on algebraic coding theory. In: Deep space network progress report. vol. 44. 1978. p. 114–6.
89. In: Wall Street Journal (Mar. 2021). ISSN: 0099-9660. URL:
(visited on 03/15/2021).
90. Alagic G, et al. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process. NISTIR 8309, NSIT; 2020. .
91. Abbott AA, Calude CS, Svozil K. A quantum random number generator certifified by value indefifiniteness. Math Struct Comput Sci. 2014;24(3). .
92. Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017;89(3). .
93. Barrett B, Bertoldi A, Bouyer P. Inertial quantum sensors using light and matter. Phys Scr. 2016;91(5):053006.
.
94. Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions. Phys Rev Lett. 1991;67:181–4.
.
95. Rasel EM et al. Atom wave interferometry with diffffraction gratings of light. Phys Rev Lett. 1995;75:2633–7.
.
96. Young B et al. Atom optic inertial and gravitational sensors. In: Frontiers in optics 2007/laser science XXIII/organic
materials and devices for displays and energy conversion. OSA. 2007. .
97. Weidner CA, Anderson DZ. Experimental Demonstration of Shaken-Lattice Interferometry. Physical Review Letters. 2018;120(26). .
98. Zhu L et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci Adv. 2020;6(31):eabb6667.
.
99. Geiger R et al. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Science. 2020;2(2):024702. .
100. Biercuk MJ et al. Ultrasensitive detection of force and displacement using trapped ions. Nat Nanotechnol. 2010;5(9):646–50. .
101. Diddams SA. An optical clock based on a single trapped 199Hg+ ion. Science. 2001;293(5531):825–8.
.
102. Ivanov PA, Vitanov NV, Singer K. High-precision force sensing using a single trapped ion. Scientifific Reports. 2016;6(1). .
103. Gilmore KA et al. Quantum-enhanced sensing of displacements and electric fifields with two-dimensional trapped-ion crystals. Science. 2021;373(6555):673–8. .
104. Taylor JM et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys. 2008;4(10):810–6.
.
105. Ledbetter MP, et al. Gyroscopes based on nitrogen-vacancy centers in diamond. Physical Review A. 2012;86(5).
.
106. Baumgratz T, Datta A. Quantum enhanced estimation of a multidimensional fifield. Phys Rev Lett. 2016;116:030801.
EPJ Quantum Technology (2021) 8:24 Page 48 of 53
107. Radtke M et al. Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: achievements and challenges. Nano Futures. 2019;3(4):042004. .
108. Dang HB, Maloof AC, Romalis MV. Ultrahigh sensitivity magnetic fifield and magnetization measurements with an atomic magnetometer. Appl Phys Lett. 2010;97(15):151110. .
109. Wasilewski W et al. Quantum noise limited and entanglement-assisted magnetometry. Phys Rev Lett. 2010;104:133601. .
110. Schreiber KU, Wells J-PR. Invited review article: large ring lasers for rotation sensing. Rev Sci Instrum. 2013;84(4):041101. .
111. BIPM Time Department. BIPM Annual Report on Time Activities. May 2020. 112. Brewer SM, et al. Al+27 Quantum-Logic Clock with a Systematic Uncertainty below 10-18. Physical Review Letters. 2019;123(3). .
113. Hwang WY et al. Entangled quantum clocks for measuring proper-time difffference. Eur Phys J D. 2002;19(1):129–32.
.
114. Marti EG, et al. Imaging Optical Frequencies with 100 Hz Precision and 1.1 m Resolution. Physical Review Letters. 2018;120(10). .
115. Pedrozo-Peñafifiel E et al. Entanglement on an optical atomic-clock transition. Nature. 2020;588(7838):414–8.
.
116. Camparo J. The rubidium atomic clock and basic research. Phys Today. 2007;60(11):33–9. .
117. Hodges JS et al. Timekeeping with electron spin states in diamond. Phys Rev A. 2013. .
118. von der Wense Lars, Seiferle B. The 229Th isomer: prospects for a nuclear optical clock. The European Physical Journal A. 2020;56(11). .
119. Campbell CJ, et al. Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. Physical Review Letters. 2012;108(12). .
120. Chu LJ. Physical limitations of omni-directional antennas. J Appl Phys. 1948;19(12):1163–75. .
121. Harrington RF. Effffect of antenna size on gain, bandwidth, and effiffifficiency. J Res Natl Bur Stand, D Radio Propag. 1960;64D(1):1. .
122. Facon A et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature. 2016;535(7611):262–5. .
123. Cox KC, et al. Quantum-Limited Atomic Receiver in the Electrically Small Regime. Physical Review Letters. 2018;121(11). .
124. Meyer DH, Kunz PD, Cox KC. Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz. Physical Review Applied. 2021;15(1). .
125. Robinson AK, et al. Determining the Angle-of-Arrival of an Radio-Frequency Source with a Rydberg Atom-Based Sensor; 2021. 2101.12071 [].
126. Gariepy G, et al. Single-photon sensitive light-in-fifight imaging. Nature Communications. 2015;6(1). .
127. Aspden RS et al. Photon-sparse microscopy: visible light imaging using infrared illumination. Optica. 2015;2(12):1049. .
128. Moreau P-A et al. Ghost imaging using optical correlations. Laser Photonics Rev. 2017;12(1):1700143.
.
129. Meyers R, Deacon K. Space-time quantum imaging. Entropy. 2015;17(3):1508–34. .
130. Walborn SP et al. Spatial correlations in parametric down-conversion. Phys Rep. 2010;495(4–5):87–139.
.
131. Pelliccia D, et al. Experimental X-Ray Ghost Imaging. Physical Review Letters. 2016;117(11). .
132. Li S, et al. Electron Ghost Imaging. Physical Review Letters. 2018;121(11). .
133. Brida G, et al. Measurement of Sub-Shot-Noise Spatial Correlations without Background Subtraction. Physical Review Letters. 2009;102(21). .
134. Lloyd S. Enhanced sensitivity of photodetection via quantum illumination. Science. 2008;321(5895):1463–5.
.
135. Smith III JFS. Quantum entangled radar theory and a correction method for the effffects of the atmosphere on entanglement. In: Donkor EJ, Pirich AR, Brandt HE, editors. Quantum information and computation VII. 2009.
Bellingham: SPIE. .
136. Barzanjeh S et al. Microwave quantum illumination using a digital receiver. Sci Adv. 2020;6(19):eabb0451.
.
137. Luong D, Rajan S, Balaji B. Entanglement-based quantum radar: from myth to reality. IEEE Aerosp Electron Syst Mag. 2020;35(4):22–35. .
138. Maccone L, Ren C. Quantum Radar. Physical Review Letters. 2020;124(20). .
139. Barzanjeh S, et al. Microwave Quantum Illumination. Physical Review Letters. 2015;114(8). .
140. Karsa A, Pirandola S. Energetic Considerations in Quantum Target Ranging; 2021. 2011.03637 [quant-ph].
141. Lanzagorta M. Quantum radar. In: Synthesis digital library of engineering and computer science. San Mateo: Morgan Kaufmann; 2011. ISBN 9781608458264.
142. Pirandola S et al. Advances in photonic quantum sensing. Nat Photonics. 2018;12(12):724–33.
.
143. Zhuang Q, Pirandola S. Entanglement-enhanced testing of multiple quantum hypotheses. Communications Physics. 2020;3(1). EPJ Quantum Technology (2021) 8:24 Page 49 of 53
144. Chu Y et al. Quantum acoustics with superconducting qubits. Science. 2017;358(6360):199–202. .
145. Satzinger KJ et al. Quantum control of surface acoustic-wave phonons. Nature. 2018;563(7733):661–5.
.
146. Wu H, et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nature Communications. 2017;8(1). .
147. Fischer B. Optical microphone hears ultrasound. Nat Photonics. 2016;10(6):356–8. .
148. Faist J et al. Quantum cascade laser. Science. 1994;264(5158):553–6. .
149. Khalatpour A et al. High-power portable terahertz laser systems. Nat Photonics. 2020. .
150. Reding DF, Eaton J. Science & technology trends 2020-2040. NATO science & technology organization. 2020.
151. Makarov V, Hjelme DR. Faked states attack on quantum cryptosystems. J Mod Opt. 2005;52(5):691–705.
.
152. Zhao Y, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Physical Review A. 2008;78(4). .
153. Lydersen L et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics. 2010;4(10):686–9. .
154. Gerhardt I, et al. Full-fifield implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications. 2011;2(1). .
155. Bugge AN, et al. Laser Damage Helps the Eavesdropper in Quantum Cryptography. Physical Review Letters.
2014;112(7). .
156. Vermeer MJD, Peet ED. Securing communications in the quantum computing age: managing the risks to encryption. Santa Monica: RAND Corporation; 2020. .
157. Pirandola S et al. Advances in quantum cryptography. In: Advances in optics and photonics. 2020. p. 1012.
.
158. Lindsay JR. Demystifying the quantum threat: infrastructure, institutions, and intelligence advantage. Secur Stud. 2020;29(2):335–61. .
159. Herman A, Friedson I. Quantum computing: how to address the national security risk. Hudson Institute; 2018.
160. European Commission. Joint Research Centre. The impact of quantum technologies on the EU’s future policies.
Part 2, Quantum communications: from science to policies. Publications Offiffiffice; 2018. ISBN: 978-92-79-77314-3.
.
161. Kline K, Salvo M, Johnson D. How artifificial intelligence and quantum computing are evolving cyber warfare. Cyber intelligence initiative, The Institute of World Politics. 2019.
2019/03/27/how-artifificial-intelligence-and-quantum-computing-are-evolving-cyber-warfare/ (visited on 02/24/2021).
Wolf SA et al. The changing face of data security: 2020 Thales data threat report. Thales. 2020.
163. Gil D. How to Preserve the Privacy of Your Genomic Data. Scientifific American. Nov. 2020. URL:
(visited on
11/11/2020).
164. Huang H-L, et al. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front Phys.
2016;12(1). .
165. Cameron L. Internet of Things Meets the Military and Battlefifield. IEEE Computer Society. URL:
(visited on 03/29/2021).
166. Fernandez-Carames TM. From pre-quantum to post-quantum IoT security: a survey on quantum-resistant cryptosystems for the Internet of things. IEEE Int Things J. 2020;7(7):6457–80.
.
167. Moskovich D. An Overview of the State of the Art for Practical Quantum Key Distribution. 2015. 1504.05471 [quant-ph].
168. Lucamarini M, et al. Implementation Security of Quantum Cryptography. 2018. ETSI White Paper No. 27.
169. European Commission. The European Quantum Communication Infrastructure (EuroQCI) Initiative. Oct. 26, 2020.
URL:
(visited on 09/08/2021).
170. National Security Agency (NSA). NSA Cybersecurity Perspectives on Quantum Key Distribution and Quantum Cryptography. Oct. 2020;26.
nsa-cybersecurity-perspectives-on-quantum-key-distribution-and-quantum-cryptogr/ (visited on 09/08/2021).
171. Abellan C, Pruneri V. The future of cybersecurity is quantum. IEEE Spectr. 2018;55(7):30–5. .
172. Kelsey J et al. Cryptanalytic attacks on pseudorandom number generators. In: Vaudenay S, editor. Fast software
encryption. Berlin: Springer. 1998. p. 168–88. ISBN 978-3-540-69710-7.
173. Mosca M, Mulholland J. A methodology for quantum risk assessment. GRI (Global Risk Institute); 2017.
174. Bogomolec X, Underhill JG, Kovac SA. Towards Post-Quantum Secure Symmetric Cryptography: a Mathematical Perspective. Cryptology. ePrint Archive, Report 2019/1208. 2019.
175. Satoh T et al. Attacking the quantum Internet. 2020. 2005.04617 [quant-ph].
176. Lavoix H. Quantum Optimization and the Future of Government. The Red Team Analysis Society. Oct. 2019. URL:
(visited on 11/17/2020).
177. Uppal R. Military decision support require effiffifficient optimization algorithms. International Defense Security & Technology. Oct. 2019. URL:
(visited on
01/27/2021).Krelina EPJ Quantum Technology (2021) 8:24 Page 50 of 53
178. Wilson JR. The future of artifificial intelligence and quantum computing. Military & Aerospace Electronics. Aug. 2020.
URL:
future-of-artifificial-intelligence-and-quantum-computing (visited on 01/27/2021).
179. Allen EH, Tallant GS, Elliot MA. Computer systems and methods for quantum verifification and validation. US patent US8832165B2. 2010.
180. Quantum Computing: Spot-Checking Millions of Lines of Code. Lockheed Martin; 2017. URL:https://www.lockheedmartin.com/en-us/news/features/2017/
quan (visited on 11/17/2020).
181. Huang H-Y et al. Power of data in quantum machine learning. Nat Commun. 2021. .
182. Artifificial Intelligence and Machine Learning in Defense Applications et al., eds. Artifificial Intelligence and Machine
Learning in Defense Applications: 10-12 September 2019, Strasbourg, France. English. OCLC: 1130085146. 2019. ISBN: 9781510630413.
183. De Spiegeleire S, Maas M, Sweijs T. Artifificial intelligence and the future of defense: strategic implications for small
and medium-sized force providers. The Hague Centre for Strategic Studies (HCSS); 2017.
184. Chancé A. Quantum machine learning is going to be the biggest application of quantum computing in the next
ten years.
-going-. Interview with Prof. Peter Wittek. 2018.
185. Huggins W et al. Towards quantum machine learning with tensor networks. Quantum Sci Technol. 2019;4(2):024001. .
186. Neumann NMP, van Heesch MPP, de Graaf P. Quantum Communication for Military Applications. 2020. 2011.04989 [quant-ph].
187. Quantum security technologies. NCSC (white paper). Mar. 2020. URL:
(visited on 11/25/2020).
188. Long GL, Liu XS. Theoretically effiffifficient high-capacity quantum-key-distribution scheme. Physical Review A. 2002;65(3). .
189. Boström K, Felbinger T. Deterministic Secure Direct Communication Using Entanglement. Physical Review Letters. 2002;89(18). .
190. Zhang W et al. Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters. 2017;118(22). .
191. Qi R, et al. Implementation and security analysis of practical quantum secure direct communication. Light Sci Appl. 2019;8(1). .
192. Gao G. Two quantum dialogue protocols without information leakage. Opt Commun. 2010;283(10):2288–93.
.
193. Han L-F et al. Multiparty quantum secret sharing of secure direct communication using single photons. Opt Commun. 2008;281(9):2690–4. .
194. You X, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts.
Sci China Inf Sci. 2020;64(1). .
195. Gottesman D, Chuang I. Quantum digital signatures. arXiv e-prints. May 2001. quant-ph/0105032 [quant-ph].
196. Malaney RA. Quantum location verifification in noisy channels. In: 2010 IEEE global telecommunications conference
GLOBECOM 2010. New York: IEEE; 2010. .
197. Chakraborty K, Leverrier A. Practical position-based quantum cryptography. Physical Review A. 2015;92(5).
.
198. Kómár P et al. A quantum network of clocks. Nat Phys. 2014;10(8):582–7. .
199. Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization. Nature. 2001;412(6845):417–9. .
200. Jozsa R et al. Quantum clock synchronization based on shared prior entanglement. Phys Rev Lett. 2000;85(9):2010–3. .
201. Krawinkel T, Schön S. Benefifits of Chip Scale Atomic Clocks in GNSS Applications. 2015. p. 2867–2874.
202. Bahder TB. Quantum positioning system; 2004. quant-ph/0406126.
203. Yang C, Wu D, Yu Y. The integration of GPS and interferometric quantum position system for high dynamic precise
positioning. In: The 2010 IEEE international conference on information and automation. New York: IEEE; 2010.
.
204. Travagnin M. Cold atom interferometry for inertial navigation sensors: technology assessment: space and defence applications. EUR 30492 EN, JRC122785. Publications Offiffiffice of the European Union; 2020. ISBN 978-92-76-27076-8.
.
205. Lutwak R. Micro-Technology for Positioning, Navigation, and Timing Towards PNT Everywhere and Always. DARPA Dec. 2014;10. (visited on 09/10/2021).
206. Lewis A, et al. Quantum Technologies: implications for European Policy. 2016. EUR 28103 EN, EU JRC Science Hub. 207. Bongs K et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys. 2019;1(12):731–9. .
208. El-Sheimy N, Youssef A. Inertial sensors technologies for navigation applications: state of the art and future trends. Satell Navig. 2020;1(1). .
209. Savoie D et al. Interleaved atom interferometry for high-sensitivity inertial measurements. Sci Adv. 2018;4(12):eaau7948. .
210. Wang X, et al. Enhancing Inertial Navigation Performance via Fusion of Classical and Quantum Accelerometers. 2103.09378 [quant-ph].
211. Battelier B et al. Development of compact cold-atom sensors for inertial navigation. In: Stuhler J, Shields AJ, editors. Quantum optics. 2016. Bellingham: SPIE. .
212. ColdQuanta. High-BIAS2 Accelerates Quantum Sensing Into Commercialization With New Milestones For Quantum Positioning System. Press release. Apr. 2021. URL:
-wi (visited on 09/08/2021).Krelina EPJ Quantum Technology (2021) 8:24 Page 51 of 53
213. Canciani A, Raquet J. Airborne magnetic anomaly navigation. IEEE Trans Aerosp Electron Syst. 2017;53(1):67–80.
.
214. Quantum Physicists Found a New, Safer Way to Navigate. Wired. Jan. 2018. URL:
(visited on 12/17/2020).
215. Moryl J, Rice H, Shinners S. The universal gravity module for enhanced submarine navigation. In: IEEE 1998 position location and navigation symposium (Cat. No. 98CH36153). New York: IEEE; 1998.
.
216. Ménoret V, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter. Scientifific Reports. 2018;8(1). .
217. Bidel Y, et al. Absolute marine gravimetry with matter-wave interferometry. Nature Communications. 2018;9(1).
.
218. Sandwell DT et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science.2014;346(6205):65–7. .
219. Bidel Y, et al. Absolute airborne gravimetry with a cold atom sensor. Journal of Geodesy. 2020;94(2).
.
220. Travagnin M. Cold atom interferometry for earth observation: perspectives for satellite based quantum gravimetry. European Commission. Joint Research Centre. Publications Offiffiffice; 2020. .
221. Mahadeswaraswamy C. Atom interferometric gravity gradiometer: disturbance compensation and mobile gradiometry. PhD thesis. Stanford University; 2009.
222. Geiger R, et al. Detecting inertial effffects with airborne matter-wave interferometry. Nature Communications. 2011;2(1). .
223. Perkins S. Tiny gravity sensor could detect drug tunnels, mineral deposits. Science. 2016. .
224. Guo R. Cross-border resource management: theory and practice. Developments in environmental science 4. OCLC: 255072969. 1st ed. Amsterdam: Elsevier; 2005. ISBN 9780444519153.
225. Battersby S. The quantum age: technological opportunities. UK Government Offiffiffice for Science; 2016.
226. Gravity sensors see underground. Gravity Pioneer project, UK National Quantum Technologies Programme; 2019.
227. Marmugi L et al. Remote detection of rotating machinery with a portable atomic magnetometer. Appl Opt. 2017;56(3):743. .
228. Hussain SY. Application of quantum magnetometers to security and defence screening. London: University College London; 2018.
229. Bond A, Brown L. The Suitability of Quantum Magnetometers for Defence Applications. Thales, UDT; 2019.
230. Kumar S et al. Real-time tracking magnetic gradiometer for underwater mine detection. In: Oceans’04 MTS/IEEE Techno-Ocean’04 (IEEE Cat. No. 04CH37600). New York: IEEE; 2004. .
231. Streland AH. A system concept for detecting deeply buried facilities from space. Fort Belvoir: Defense Technical Information Center; 2003. . (Visited on 02/26/2021).
232. QLM Technology Ltd. Quantum Gas Cameras for Continuous Industrial Methane Monitoring. Product Brochure; 2021.
233. Cohen L, et al. Thresholded Quantum LIDAR: Exploiting Photon-Number-Resolving Detection. Physical Review Letters. 2019;123(20). .
234. Frick S, McMillan A, Rarity J. Quantum rangefifinding. Opt Express. 2020;28(25):37118. .
235. Hardy ND, Shapiro JH. Computational ghost imaging versus imaging laser radar for three-dimensional imaging.
Physical Review A. 2013;87(2). .
236. Meyer DH et al. Assessment of Rydberg atoms for wideband electric fifield sensing. J Phys B, At Mol Opt Phys. 2020;53(3):034001. .
237. ColdQuanta. QRF - Technology Deep Dive. 2021. URL:
.
238. Baili G et al. Quantum-based metrology for timing, navigation and RF spectrum analysis. In: Quantum technologies in optronics. European Defence Agency; 2019. .
239. Pietrzak J. Laser warning receivers. In: Wolinski WL, Jankiewicz Z, Romaniuk R, editors. Laser technology VII: applications of lasers. Bellingham: SPIE; 2003. .
240. Fei Y-Y, et al. Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Scientifific Reports. 2018;8(1). .
241. Vergoossen T et al. Satellite quantum communications when man-in-the-middle attacks are excluded. Entropy. 2019;21(4):387. .
242. Lee MS et al. Quantum hacking on a free-space quantum key distribution system without measuring quantum signals. J Opt Soc Am B. 2019;36(3):B77. .
243. Gallego Torromé R, Ben Bekhti-Winkel N, Knott P. Introduction to quantum radar. 2021. 2006.14238 [quant-ph].
244. Shapiro JH. The quantum illumination story. IEEE Aerosp Electron Syst Mag. 2020;35(4):8–20. .
245. China’s quantum radar was successfully developed. [in Chinese]. Phoenix News. Sept. 2016. URL:
(visited on 10/06/2020).
246. China Shows Offff First Quantum Radar Prototype. Aviation Week. Nov. 2018. URL:
(visited on 10/06/2020).
247. Daum F. Quantum radar cost and practical issues. IEEE Aerosp Electron Syst Mag. 2020;35(11):8–20..
248. Karsa A, et al. Quantum illumination with a generic Gaussian source. Physical Review Research. 2020;2(2).
.
249. Luong D et al. Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Trans Aerosp Electron Syst. 2020;56(3):2041–60. EPJ Quantum Technology (2021) 8:24 Page 52 of 53
250. Lanzagorta M. Quantum radar cross sections. In: Zadkov VN, Durt T, editors. Quantum optics. 2010. Bellingham: SPIE.
.