物理和数学本来就是互补的,坚实的数学基础对物理学的提升相当大。
数学中的微积分对于解决物理问题有其先天优势。2016年物理竞赛大纲中明确要求了微积分初步及其应用,那么学习微积分最重要的是理解其思想,其次是计算。本文诣在用通俗易懂的语言、生动形象的例子帮助高中生理解、掌握微积分,并且会进行简单的计算。微积分的思想两大基础是:函数、极限
一、函数
1.1 数学上函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
那么在物理学领域对应的函数概念是什么呢?
物理学中,在课本上经常看到一些物理公式、解题时经常列一些方程等等,其本质就是函数。数学上,函数可以描述x和y之间的关系;同理,物理上的公式(方程)也可以描述两个物理量之间的关系。
例如:
其实物理公式(方程)本质就是就是函数,用来描述物理量之间的关系;首先我们要扭转一个观念,我们在平常解题的习惯中认为方程是针对的某一时刻、某一点或者某个状态,那是狭义的。方程本来是描述的整个物理过程(特殊情况除外),只有带入具体数据时,才是描述的某一个特定点或状态。
例如:在下图中,函数都是描述的一条直线,而不是一个点。
1.2 函数概念理解之后,我们来看积分对象:微分方程
如果想使用微积分解决问题,首先要列出微分方程,然后对微分方程进行积分。
那什么是微分方程呢?
我们之前说过,方程的本质就是函数,数学上定义微分方程:指含有未知函数及其导数的关系式。物理上就是含有微分变量的方程(也可以理解为含有微分变量的函数)。
例如 速度:dx=vdt
物理角度:无限小的一段位移dx,我们可以认为是匀速运动,经过很短的时间dt,对应的速度就是v。数学角度:x是关于时间的t的函数,等式左边对因变量x求导,等式右边对自变量t求导。另外,dx=vdt可以表示整个物理过程中的速度,当题中已知速度关于时间的具体表达式时,我们就可以对其进行积分求解,进而求出位移x关于时间t的表达式。
同理加速度:dv=adt
二、极限
2.1 数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”。
例如函数:y=arctanx,逐渐逼近π/2,但是又不等于π/2。
2.2 物理中通常涉及的到是某个物理量达到无穷大量时,对应函数的极限。例如万有引力,当r→∞时,万有引力趋于零。另外还有一个概念,无穷小量,这个在处理近似问题时会经常用到。我们在利用无穷小量处理近似问题时经常有这样的困惑:那些量可以舍去,那些量不可以舍去?怎么判断?在解决这个问题时,我们先引入一个概念高阶小量。无穷小量二次及二次以上的量都称为高阶小量。在做近似处理时,情况一:式子不含常量时,把高阶小量舍去,保留一阶的无穷小量;情况二:式子含常量时,舍去无穷小量。
例如:
其中 ri-r(i-1)=△x, △x趋于0(即无穷小量),很多人不知道该处理。其实这里就是舍去含有无穷小量项,用的熟练以后可以直接使用,接下来我们进行简单推导:
到这里已经很清楚了,含有△x的项都需要舍去(因为有限量乘以无穷小量还是无穷小量,仍然趋于零)。这样原式求和就变得很简单了。
三、用微积分解决物理问题的一般步骤
1. 建立适当坐标系(本质参考系的选取)
坐标系的选取直接关系到积分的难易。
2. 建立微分表达式
通常我们理解的物理方程可以描述物理过程,同样微分方程也可以描述物理过程。有的可以直接建立微分表达式(容易);有的不能直接建立微分表达式(困难);如何利用已知条件建立的微分表达式?本质是找到积分变量与求解变量之间的微分表达式。
3. 确定积分上下限
定积分的上下限和物理过程中的边界条件有关系,有时候物理问题中明确已知边界条件,有时候则需要自己根据已知条件、或者物理过程的限制进行确定。不定积分根据边界条件确定常数。
4. 积分计算结果
纯数学计算,掌握常见函数积分和常规方法即可,复杂可以对应查积分表。
四、不同模块的实例来学习微积分的应用
运动学篇:
两边积分就可以求出x关于t的方程,利用t=0时,x=0的边值条件确定常数C。对x(t)求一次导得到速度与时间的关系式;求二次导得到加速度与时间的关系。
解:以地面为参考系,以导弹发射点为原点,导弹与飞行物初始位置连线方向为x方向,如图建立直角坐标系。我们任取轨迹上一点A(x,y),则有:
这部分主要是在寻找dx和dy之间的关系,建立微分表达式,本例题几乎涵盖了常见的使用方法;有人质疑①式不是已经有dx和dy之间的关系式,但是三角函数不是已知量,且θ是随x,y变化的量不能直接积分。
微分方程积分求解过程如下(积分二次微分方程):
所以导弹的轨迹方程为:
(未完待续.....)