您的位置 首页 > 数码极客

(向量数乘)向量数乘运算?

什么是向量

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。

它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

向量垂直公式


a,b是两个向量

a=(a1,a2) b=(b1,b2)

a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数

a垂直b:a1b1+a2b2=0

证明:

①几何角度:

向量A (x1,y1),长度 L1 =√(x1²+y1²)

向量B (x2,y2),长度 L2 =√(x2²+y2²)

(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]

两个向量垂直,根据勾股定理:L1² + L2² = D²

∴ (x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²

∴ x1² + y1² + x2² + y2² = x1² -2x1x2 + x2² + y1² - 2y1y2 + y2²

∴ 0 = -2x1x2 - 2y1y2

∴ x1x2 + y1y2 = 0

②扩展到三维角度:

x1x2 + y1y2 + z1z2 = 0,

那么向量(x1,y1,z1)和(x2,y2,z2)垂直

综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0 成立。

平面向量加法公式


已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC

即有:AB+BC=AC。

用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。

这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差

三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。

四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。

对于零向量和任意向量a,有:0+a=a+0=a。

向量的加法满足所有的加法运算定律,如:交换律、结合律。

平面向量减法公式


AB-AC=CB,这种计算法则叫做向量减法的三角形法则

简记为:共起点、连中点、指被减。

-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

平面向量数乘公式


实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。

当λ>0时,λa的方向和a的方向相同,

当λ<0时,λa的方向和a的方向相反,

当λ = 0时,λa=0。

用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)

设λ、μ是实数,那么满足如下运算性质:

(λμ)a= λ(μa)

(λ + μ)a= λa+ μa

λ(a±b) = λa± λb

(-λ)a=-(λa) = λ(-a)

|λa|=|λ||a|

平面向量数量积公式


已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。

零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

责任编辑: 鲁达

1.内容基于多重复合算法人工智能语言模型创作,旨在以深度学习研究为目的传播信息知识,内容观点与本网站无关,反馈举报请
2.仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证;
3.本站属于非营利性站点无毒无广告,请读者放心使用!

“向量数乘,向量数乘运算,向量数乘运算及其几何意义”边界阅读