您的位置 首页 > 数码极客

如何判断回归系数显著性,eviews回归系数的显著性检验

离差平方和的分解

  • 因变量 y 的取值是不同的,y 取值的这种波动称为变差。变差来源于两个方面

    • 由于自变量 x 的取值不同造成的

    • 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)的影响

  • 对一个具体的观测值来说,变差的大小可以通过该实际观测值与其均值之差来表示

离差平方和的分解图示

三个平方和的关系

从上图看有:

离差平方和的分解

两端平方后求和有:

离差平方和的分解公式

三个平方和的意义

  • 总平方和(SST)

反映因变量的 n 个观察值与其均值的总离差

  • 回归平方和(SSR)

反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和

  • 残差平方和(SSE)

反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和

样本决定系数(判定系数 r2 )

  • 回归平方和占总离差平方和的比例

样本决定系数

  • 反映回归直线的拟合程度

  • 取值范围在 [ 0 , 1 ] 之间

    • r2 —>1,说明回归方程拟合的越好

    • r2—>0,说明回归方程拟合的越差

  • 判定系数等于相关系数的平方,即r2=(r)2

回归方程的显著性检验 (线性关系的检验 )

  • 检验自变量和因变量之间的线性关系是否显著

  • 具体方法是将回归离差平方和(SSR)同剩余离差平方和(SSE)加以比较,应用F检验来分析二者之间的差别是否显著

    • 如果是显著的,两个变量之间存在线性关系

    • 如果不显著,两个变量之间不存在线性关系

  • 检验的步骤

回归方程的显著性检验

责任编辑: 鲁达

1.内容基于多重复合算法人工智能语言模型创作,旨在以深度学习研究为目的传播信息知识,内容观点与本网站无关,反馈举报请
2.仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证;
3.本站属于非营利性站点无毒无广告,请读者放心使用!

“如何判断回归系数显著性,eviews回归系数的显著性检验,判断回归系数的显著性,如何检验回归系数的显著性,回归系数显著性检验判断方法”边界阅读