您的位置 首页 > 数码极客

c语言中如何开方、c语言开方函数怎么写

C语言中要求平方根,可以在头文件中加入#include <ma;.然后调用sqrt(n);函数即可。但在单片机中调用此函数无疑会耗费大量资源和时间,是极不合适的。在此,总结下网上常见的四种单片机常用开方根算法:

对于拥有专门的乘除法指令的单片机,可采用以下两种方法:

1、二分法

对于一个非负数n,它的平方根不会小于大于(n/2+1)(谢谢@linzhi-cs提醒)。在[0, n/2+1]这个范围内可以进行二分搜索,求出n的平方根。

-------------------------------------------------------------------------------

1 int sqrt(int x) { 2 long long i = 0; 3 long long j = x / 2 + 1; 4 while (i <= j) 5 { 6 long long mid = (i + j) / 2; 7 long long sq = mid * mid; 8 if (sq == x) return mid; 9 else if (sq < x) i = mid + 1; 10 else j = mid - 1; 11 } 12 return j; 13 }

-------------------------------------------------------------------------------

2、更为常用的牛顿迭代法

-------------------------------------------------------------------------------

1 int sqrt(int x) { 2 if (x == 0) return 0; 3 double last = 0; 4 double res = 1; 5 while (res != last) 6 { 7 last = res; 8 res = (res + x / res) / 2; 9 } 10 return int(res); 11 }

-------------------------------------------------------------------------------

牛顿迭代法也可以求解多次方程。

对于不带乘除法指令的单片机,可采取以下两种算法:

算法3:

本算法只采用移位、加减法、判断和循环实现,因为它不需要浮点运算,也不需要乘除运算,因此可以很方便地运用到各种芯片上去。

我们先来看看10进制下是如何手工计算开方的:

先看下面两个算式:

x = 10*p + q (1)

公式(1)左右平方之后得:

x^2 = 100*p^2 + 20pq + q^2 (2)

现在假设我们知道x^2和p,希望求出q来,求出了q也就求出了x^2的开方x了。

我们把公式(2)改写为如下格式:

q = (x^2 - 100*p^2)/(20*p+q) (3)

这个算式左右都有q,因此无法直接计算出q来,因此手工的开方算法和手工除法算法一样有一步需要猜值。

我们来一个手工计算的例子:计算1234567890的开方

首先我们把这个数两位两位一组分开,计算出最高位为3。也就是(3)中的p,最下面一行的334为余数,也就是公式(3)中的(x^2 - 100*p^2)近似值

3 --------------- | 12 34 56 78 90 9 --------------- | 3 34

下面我们要找到一个0-9的数q使它最接近满足公式(3)。我们先把p乘以20写在334左边:

3 q --------------- | 12 34 56 78 90 9 --------------- 6q| 3 34

我们看到q为5时(60+q*q)的值最接近334,而且不超过334。于是我们得到:

3 5 --------------- | 12 34 56 78 90 9 --------------- 65| 3 34 | 3 25 --------------- 9 56

接下来就是重复上面的步骤了,这里就不再啰嗦了。

这个手工算法其实和10进制关系不大,因此我们可以很容易的把它改为二进制,改为二进制之后,公式(3)就变成了:

q = (x^2 - 4*p^2)/(4*p+q) (4)

我们来看一个例子,计算100(二进制1100100)的开方:

1 0 1 0 --------------- | 1 10 01 00 1 --------------- 100| 0 10 | 0 00 --------------- | 10 011001| 10 01 --------------- 0 00

这里每一步不再是把p乘以20了,而是把p乘以4,也就是把p右移两位,而由于q的值只能为0或者1,所以我们只需要判断余数(x^2 - 4*p^2)和(4*p+1)的大小关系,如果余数大于等于(4*p+q)那么该上一个1,否则该上一个0。

下面给出完成的C语言程序,其中root表示p,rem表示每步计算之后的余数,divisor表示(4*p+1),通过a>>30取a的最高 2位,通过a<<=2将计算后的最高2位剔除。其中root的两次<<1相当于4*p。程序完全是按照手工计算改写的,应该不难理解。

-------------------------------------------------------------------------------

unsigned short sqrt(unsigned long a){ unsigned long rem = 0; unsigned long root = 0; unsigned long divisor = 0; for(int i=0; i<16; i++){ root <<= 1; rem = ((rem << 2) + (a >> 30)); a <<= 2; divisor = (root<<1) + 1; if(divisor <= rem){ rem -= divisor; root++; } } return (unsigned short)(root); }

-------------------------------------------------------------------------------

算法4

这种方法比牛顿迭代法更加快速的方法。

1.原理

下述用pow(X,Y)表示X的Y次幂,用B[0],B[1],...,B[m-1]表示一个序列,

其中[x]为下标。

假设:

B[x],b[x]都是二进制序列,取值0或1。

1、 M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow

(2,0)

2、 N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow

(2,0)

3、 pow(N,2) = M

(1) N的最高位b[n-1]可以根据M的最高位B[m-1]直接求得。

设 m 已知,因为 pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <=

pow(2, m/2)

如果 m 是奇数,设m=2*k+1,

那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1),

n-1=k, n=k+1=(m+1)/2

如果 m 是偶数,设m=2k,

那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1),

n-1=k-1,n=k=m/2

所以b[n-1]完全由B[m-1]决定。

余数 M[1] = M - b[n-1]*pow(2, 2*n-2)

(2) N的次高位b[n-2]可以采用试探法来确定。

因为b[n-1]=1,假设b[n-2]=1,则 pow(b[n-1]*pow(2,n-1) + b[n-1]*pow(2,n-2),

2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)),

然后比较余数M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4)。这种

比较只须根据B[m-1]、B[m-2]、...、B[2*n-4]便可做出判断,其余低位不做比较。

若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设有效,b[n-2] =

1;

余数 M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] -

(pow(2,2)+1)*pow(2,2*n-4);

若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 则假设无效,b[n-2] =

0;余数 M[2] = M[1]。

(3) 同理,可以从高位到低位逐位求出M的平方根N的各位。

使用这种算法计算32位数的平方根时最多只须比较16次,而且每次比较时不必把M的各位逐

一比较,尤其是开始时比较的位数很少,所以消耗的时间远低于牛顿迭代法。

2. 实现代码

这里给出实现32位无符号整数开方得到16位无符号整数的C语言代码。

-------------------------------------------------------------------------------

/****************************************/ /*Function: 开根号处理 */ /*入口参数:被开方数,长整型 */ /*出口参数:开方结果,整型 */ /****************************************/ unsigned int sqrt_16(unsigned long M) { unsigned int N, i; unsigned long tmp, ttp; // 结果、循环计数 if (M == 0) // 被开方数,开方结果也为0 return 0; N = 0; tmp = (M >> 30); // 获取最高位:B[m-1] M <<= 2; if (tmp > 1) // 最高位为1 { N ++; // 结果当前位为1,否则为默认的0 tmp -= N; } for (i=15; i>0; i--) // 求剩余的15位 { N <<= 1; // 左移一位 tmp <<= 2; tmp += (M >> 30); // 假设 ttp = N; ttp = (ttp<<1)+1; M <<= 2; if (tmp >= ttp) // 假设成立 { tmp -= ttp; N ++; } } return N; }

-------------------------------------------------------------------------------

以上算法结尾网上收集所得,虽然原理可能比较难懂,但都可在单片机中实际运用。

责任编辑: 鲁达

1.内容基于多重复合算法人工智能语言模型创作,旨在以深度学习研究为目的传播信息知识,内容观点与本网站无关,反馈举报请
2.仅供读者参考,本网站未对该内容进行证实,对其原创性、真实性、完整性、及时性不作任何保证;
3.本站属于非营利性站点无毒无广告,请读者放心使用!

“c语言中如何开方,c语言开方函数怎么写,c语言如何开方不用函数,c语言如何开方运算,c语言中开方的符号”边界阅读