通知:我已经将刷题指南全部整理到了Github :,方便大家在电脑上阅读,这个仓库每天都会更新,大家快去给一个star支持一下吧!
474.一和零
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
提示:
- 1 <= <= 600
- 1 <= strs[i].length <= 100
- strs[i] 仅由 '0' 和 '1' 组成
- 1 <= m, n <= 100
思路
这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢哈哈。
来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。
其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系
多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。
但本题其实是01背包问题!
这不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。
开始动规五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
- 确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
然后我们在遍历的过程中,取dp[i][j]的最大值。
所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。
这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。
- dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组)中已经讲解了,01背包的dp数组初始化为0就可以。
因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
- 确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!
那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。
代码如下:
for (string str : strs) { // 遍历物品 int oneNum = 0, zeroNum = 0; for (char c : str) { if (c == '0') zeroNum++; else oneNum++; } for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历! for (int j = n; j >= oneNum; j--) { dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1); } } }
有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?
没讲究,都是物品重量的一个维度,先遍历那个都行!
- 举例推导dp数组
以输入:["10","0001","111001","1","0"],m = 3,n = 3为例
最后dp数组的状态如下所示:
以上动规五部曲分析完毕,C++代码如下:
class Solution { public: int findMaxForm(vector<string>& strs, int m, int n) { vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0 for (string str : strs) { // 遍历物品 int oneNum = 0, zeroNum = 0; for (char c : str) { if (c == '0') zeroNum++; else oneNum++; } for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历! for (int j = n; j >= oneNum; j--) { dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1); } } } return dp[m][n]; } };
总结
不少同学刷过这道提,可能没有总结这究竟是什么背包。
这道题的本质是有两个维度的01背包,如果大家认识到这一点,对这道题的理解就比较深入了。
力扣刷题指南:
这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!
@代码随想录 期待你的关注