一、正确使用redis 数据类型
我们先了解下 String 类型的内存空间消耗问题,以及选择节省内存开销的数据类型的解决方案。例如一个图片存储系统,要求这个系统能快速地记录图片 ID 和图片在存储系统中保存时的 ID(可以直接叫作图片存储对象 ID)。同时,还要能够根据图片 ID 快速查找到图片存储对象 ID。因为图片数量巨大,所以我们就用 10 位数来表示图片 ID 和图片存储对象 ID,例如,图片 ID 为 1101000051,它在存储系统中对应的 ID 号是 3301000051。
photo_id: 1101000051 photo_obj_id: 3301000051
如果我们的第一个方案就是用 String 保存数据。我们把图片 ID 和图片存储对象 ID 分别作为键值对的 key 和 value 来保存,其中,图片存储对象 ID 用了 String 类型。刚开始,我们保存了 1 亿张图片,大约用了 6.4GB 的内存。但是,随着图片数据量的不断增加,我们的 Redis 内存使用量也在增加,结果就遇到了大内存 Redis 实例因为生成 RDB 而响应变慢的问题。很显然,String 类型并不是一种好的选择,我们还需要进一步寻找能节省内存开销的数据类型方案。在这个过程中,发现String类型的内存开销巨大,对“万金油”的 String 类型有了全新的认知:String 类型并不是适用于所有场合的,它有一个明显的短板,就是它保存数据时所消耗的内存空间较多。
为什么String类型内存开销大呢?
在刚才的案例中,我们保存了 1 亿张图片的信息,用了约 6.4GB 的内存,一个图片 ID 和图片存储对象 ID 的记录平均用了 64 字节。但问题是,一组图片 ID 及其存储对象 ID 的记录,实际只需要 16 字节就可以了。
我们来分析一下。图片 ID 和图片存储对象 ID 都是 10 位数,我们可以用两个 8 字节的 Long 类型表示这两个 ID。因为 8 字节的 Long 类型最大可以表示 2 的 64 次方的数值,所以肯定可以表示 10 位数。但是,为什么 String 类型却用了 64 字节呢?
其实,除了记录实际数据,String 类型还需要额外的内存空间记录数据长度、空间使用等信息,这些信息也叫作元数据。当实际保存的数据较小时,元数据的空间开销就显得比较大了。那么,String 类型具体是怎么保存数据的呢?
因为当你保存 64 位有符号整数时,String 类型会把它保存为一个 8 字节的 Long 类型整数,这种保存方式通常也叫作 int 编码方式。但是,当你保存的数据中包含字符时,String 类型就会用简单动态字符串(Simple Dynamic String,SDS)结构体来保存,如下图所示:
buf:字节数组,保存实际数据。为了表示字节数组的结束,Redis 会自动在数组最后加一个“\0”,这就会额外占用 1 个字节的开销。
len:占 4 个字节,表示 buf 的已用长度。
alloc:也占个 4 字节,表示 buf 的实际分配长度,一般大于 len。
可以看到,在 SDS 中,buf 保存实际数据,而 len 和 alloc 本身其实是 SDS 结构体的额外开销。另外,对于 String 类型来说,除了 SDS 的额外开销,还有一个来自于 RedisObject 结构体的开销。因为 Redis 的数据类型有很多,而且,不同数据类型都有些相同的元数据要记录(比如最后一次访问的时间、被引用的次数等),所以,Redis 会用一个 RedisObject 结构体来统一记录这些元数据,同时指向实际数据。一个 RedisObject 包含了 8 字节的元数据和一个 8 字节指针,这个指针再进一步指向具体数据类型的实际数据所在,例如指向 String 类型的 SDS 结构所在的内存地址,可以看一下下面的示意图。
为了节省内存空间,Redis 还对 Long 类型整数和 SDS 的内存布局做了专门的设计。一方面,当保存的是 Long 类型整数时,RedisObject 中的指针就直接赋值为整数数据了,这样就不用额外的指针再指向整数了,节省了指针的空间开销。另一方面,当保存的是字符串数据,并且字符串小于等于 44 字节时,RedisObject 中的元数据、指针和 SDS 是一块连续的内存区域,这样就可以避免内存碎片。这种布局方式也被称为 embstr 编码方式。当然,当字符串大于 44 字节时,SDS 的数据量就开始变多了,Redis 就不再把 SDS 和 RedisObject 布局在一起了,而是会给 SDS 分配独立的空间,并用指针指向 SDS 结构。这种布局方式被称为 raw 编码模式。int、embstr 和 raw 这三种编码模式示意图如下:
好了,知道了 RedisObject 所包含的额外元数据开销,借来下来计算 String 类型的内存使用量了。
因为 10 位数的图片 ID 和图片存储对象 ID 是 Long 类型整数,所以可以直接用 int 编码的 RedisObject 保存。每个 int 编码的 RedisObject 元数据部分占 8 字节,指针部分被直接赋值为 8 字节的整数了。此时,每个 ID 会使用 16 字节,加起来一共是 32 字节。但是,另外的 32 字节去哪儿了呢?
如果大家有了解过redis的底层数据结构的话,Redis 会使用一个全局哈希表保存所有键值对,哈希表的每一项是一个 dictEntry 的结构体,用来指向一个键值对。dictEntry 结构中有三个 8 字节的指针,分别指向 key、value 以及下一个 dictEntry,三个指针共 24 字节,如下图所示:
但是,这三个指针只有 24 字节,为什么会占用了 32 字节呢?这就要提到 Redis 使用的内存分配库 jemalloc 了。jemalloc 在分配内存时,会根据我们申请的字节数 N,找一个比 N 大,但是最接近 N 的 2 的幂次数作为分配的空间,这样可以减少频繁分配的次数。
举个例子。如果你申请 6 字节空间,jemalloc 实际会分配 8 字节空间;如果你申请 24 字节空间,jemalloc 则会分配 32 字节。所以,在我们刚刚说的场景里,dictEntry 结构就占用了 32 字节。
那么我们该选择redis那种数据结构呢?
Redis 有一种底层数据结构,叫压缩列表(ziplist),这是一种非常节省内存的结构。压缩列表的构成由三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量,以及列表中的 entry 个数。压缩列表尾还有一个 zlend,表示列表结束。
压缩列表之所以能节省内存,就在于它是用一系列连续的 entry 保存数据。每个 entry 的元数据包括下面几部分:
prev_len,表示前一个 entry 的长度。prev_len 有两种取值情况:1 字节或 5 字节。取值 1 字节时,表示上一个 entry 的长度小于 254 字节。虽然 1 字节的值能表示的数值范围是 0 到 255,但是压缩列表中 zlend 的取值默认是 255,因此,就默认用 255 表示整个压缩列表的结束,其他表示长度的地方就不能再用 255 这个值了。所以,当上一个 entry 长度小于 254 字节时,prev_len 取值为 1 字节,否则,就取值为 5 字节。
len:表示自身长度,4 字节;
encoding:表示编码方式,1 字节;
content:保存实际数据。
这些 entry 会挨个儿放置在内存中,不需要再用额外的指针进行连接,这样就可以节省指针所占用的空间。我们以保存图片存储对象 ID 为例,来分析一下压缩列表是如何节省内存空间的。每个 entry 保存一个图片存储对象 ID(8 字节),此时,每个 entry 的 prev_len 只需要 1 个字节就行,因为每个 entry 的前一个 entry 长度都只有 8 字节,小于 254 字节。这样一来,一个图片的存储对象 ID 所占用的内存大小是 14 字节(1+4+1+8=14),实际分配 16 字节。
Redis 基于压缩列表实现了 List、Hash 和 Sorted Set 这样的集合类型,这样做的最大好处就是节省了 dictEntry 的开销。当你用 String 类型时,一个键值对就有一个 dictEntry,要用 32 字节空间。但采用集合类型时,一个 key 就对应一个集合的数据,能保存的数据多了很多,但也只用了一个 dictEntry,这样就节省了内存。这个方案听起来很好,但还存在一个问题:在用集合类型保存键值对时,一个键对应了一个集合的数据,但是在我们的场景中,一个图片 ID 只对应一个图片的存储对象 ID,我们该怎么用集合类型呢?换句话说,在一个键对应一个值(也就是单值键值对)的情况下,我们该怎么用集合类型来保存这种单值键值对呢?
在保存单值的键值对时,可以采用基于 Hash 类型的二级编码方法。这里说的二级编码,就是把一个单值的数据拆分成两部分,前一部分作为 Hash 集合的 key,后一部分作为 Hash 集合的 value,这样一来,我们就可以把单值数据保存到 Hash 集合中了。以图片 ID 1101000060 和图片存储对象 ID 3302000080 为例,我们可以把图片 ID 的前 7 位(1101000)作为 Hash 类型的键,把图片 ID 的最后 3 位(060)和图片存储对象 ID 分别作为 Hash 类型值中的 key 和 value。按照这种设计方法,我在 Redis 中插入了一组图片 ID 及其存储对象 ID 的记录,并且用 info 命令查看了内存开销,我发现,增加一条记录后,内存占用只增加了 16 字节,如下所示:
127.0.0.1:6379> info memory #Memory used_memory:1039120 127.0.0.1:6379> hset 1101000 060 3302000080 (integer) 1 127.0.0.1:6379> info memory # Memory used_memory:1039136
在使用 String 类型时,每个记录需要消耗 64 字节,这种方式却只用了 16 字节,所使用的内存空间是原来的 1/4,满足了我们节省内存空间的需求。不过,你可能也会有疑惑:“二级编码一定要把图片 ID 的前 7 位作为 Hash 类型的键,把最后 3 位作为 Hash 类型值中的 key 吗?”其实,二级编码方法中采用的 ID 长度是有讲究的。
Redis Hash 类型的两种底层实现结构,分别是压缩列表和哈希表。那么,Hash 类型底层结构什么时候使用压缩列表,什么时候使用哈希表呢?
其实,Hash 类型设置了用压缩列表保存数据时的两个阈值,一旦超过了阈值,Hash 类型就会用哈希表来保存数据了。这两个阈值分别对应以下两个配置项:
hash-max-ziplist-entries:表示用压缩列表保存时哈希集合中的最大元素个数。
hash-max-ziplist-value:表示用压缩列表保存时哈希集合中单个元素的最大长度。
如果我们往 Hash 集合中写入的元素个数超过了 hash-max-ziplist-entries,或者写入的单个元素大小超过了 hash-max-ziplist-value,Redis 就会自动把 Hash 类型的实现结构由压缩列表转为哈希表。一旦从压缩列表转为了哈希表,Hash 类型就会一直用哈希表进行保存,而不会再转回压缩列表了。在节省内存空间方面,哈希表就没有压缩列表那么高效了。
为了能充分使用压缩列表的精简内存布局,我们一般要控制保存在 Hash 集合中的元素个数。所以,在刚才的二级编码中,我们只用图片 ID 最后 3 位作为 Hash 集合的 key,也就保证了 Hash 集合的元素个数不超过 1000,同时,我们把 hash-max-ziplist-entries 设置为 1000,这样一来,Hash 集合就可以一直使用压缩列表来节省内存空间了。
二、内存碎片化
在使用 Redis 时,我们经常会遇到这样一个问题:明明做了数据删除,数据量已经不大了,为什么使用 top 命令查看时,还会发现 Redis 占用了很多内存呢?实际上,这是因为,当数据删除后,Redis 释放的内存空间会由内存分配器管理,并不会立即返回给操作系统。所以,操作系统仍然会记录着给 Redis 分配了大量内存。但是,这往往会伴随一个潜在的风险点:Redis 释放的内存空间可能并不是连续的,那么,这些不连续的内存空间很有可能处于一种闲置的状态。这就会导致一个问题:虽然有空闲空间,Redis 却无法用来保存数据,不仅会减少 Redis 能够实际保存的数据量,还会降低 Redis 运行机器的成本回报率。
Redis 中的内存碎片是什么原因导致的呢?接下来,我带你来具体看一看。我们只有了解了内存碎片的成因,才能对症下药,把 Redis 占用的内存空间充分利用起来,增加存储的数据量。
其实,内存碎片的形成有内因和外因两个层面的原因。简单来说,内因是操作系统的内存分配机制,外因是 Redis 的负载特征。
内因:内存分配器的分配策略
内存分配器的分配策略就决定了操作系统无法做到“按需分配”。这是因为,内存分配器一般是按固定大小来分配内存,而不是完全按照应用程序申请的内存空间大小给程序分配。
Redis 可以使用 libc、jemalloc、tcmalloc 多种内存分配器来分配内存,默认使用 jemalloc。接下来,我就以 jemalloc 为例,来具体解释一下。其他分配器也存在类似的问题。jemalloc 的分配策略之一,是按照一系列固定的大小划分内存空间,例如 8 字节、16 字节、32 字节、48 字节,…, 2KB、4KB、8KB 等。当程序申请的内存最接近某个固定值时,jemalloc 会给它分配相应大小的空间。
这样的分配方式本身是为了减少分配次数。例如,Redis 申请一个 20 字节的空间保存数据,jemalloc 就会分配 32 字节,此时,如果应用还要写入 10 字节的数据,Redis 就不用再向操作系统申请空间了,因为刚才分配的 32 字节已经够用了,这就避免了一次分配操作。但是,如果 Redis 每次向分配器申请的内存空间大小不一样,这种分配方式就会有形成碎片的风险,而这正好来源于 Redis 的外因了。
外因:键值对大小不一样和删改操作
Redis 通常作为共用的缓存系统或键值数据库对外提供服务,所以,不同业务应用的数据都可能保存在 Redis 中,这就会带来不同大小的键值对。这样一来,Redis 申请内存空间分配时,本身就会有大小不一的空间需求。这是第一个外因。
从上面,我们知道内存分配器只能按固定大小分配内存,所以,分配的内存空间一般都会比申请的空间大一些,不会完全一致,这本身就会造成一定的碎片,降低内存空间存储效率。
比如说,应用 A 保存 6 字节数据,jemalloc 按分配策略分配 8 字节。如果应用 A 不再保存新数据,那么,这里多出来的 2 字节空间就是内存碎片了,如下图所示:
第二个外因是,这些键值对会被修改和删除,这会导致空间的扩容和释放。具体来说,一方面,如果修改后的键值对变大或变小了,就需要占用额外的空间或者释放不用的空间。另一方面,删除的键值对就不再需要内存空间了,此时,就会把空间释放出来,形成空闲空间。
如下图:
一开始,应用 A、B、C、D 分别保存了 3、1、2、4 字节的数据,并占据了相应的内存空间。然后,应用 D 删除了 1 个字节,这个 1 字节的内存空间就空出来了。紧接着,应用 A 修改了数据,从 3 字节变成了 4 字节。为了保持 A 数据的空间连续性,操作系统就需要把 B 的数据拷贝到别的空间,比如拷贝到 D 刚刚释放的空间中。此时,应用 C 和 D 也分别删除了 2 字节和 1 字节的数据,整个内存空间上就分别出现了 2 字节和 1 字节的空闲碎片。如果应用 E 想要一个 3 字节的连续空间,显然是不能得到满足的。因为,虽然空间总量够,但却是碎片空间,并不是连续的。
好了,到这里,我们就知道了造成内存碎片的内外因素,其中,内存分配器策略是内因,而 Redis 的负载属于外因,包括了大小不一的键值对和键值对修改删除带来的内存空间变化。大量内存碎片的存在,会造成 Redis 的内存实际利用率变低,接下来,我们就要来解决这个问题了。不过,在解决问题前,我们要先判断 Redis 运行过程中是否存在内存碎片。
如何判断是否有内存碎片?
Redis 是内存数据库,内存利用率的高低直接关系到 Redis 运行效率的高低。为了让用户能监控到实时的内存使用情况,Redis 自身提供了 INFO 命令,可以用来查询内存使用的详细信息,命令如下:
INFO memory # Memory used_memory:1073741736 used_memory_human:1024.00M used_memory_rss:1997159792 used_memory_rss_human:1.86G … mem_fragmentation_ratio:1.86
这里有一个 mem_fragmentation_ratio 的指标,它表示的就是 Redis 当前的内存碎片率。那么,这个碎片率是怎么计算的呢?其实,就是上面的命令中的两个指标 used_memory_rss 和 used_memory 相除的结果。
mem_fragmentation_ratio = used_memory_rss/ used_memory
used_memory_rss 是操作系统实际分配给 Redis 的物理内存空间,里面就包含了碎片;而 used_memory 是 Redis 为了保存数据实际申请使用的空间。我简单举个例子。例如,Redis 申请使用了 100 字节(used_memory),操作系统实际分配了 128 字节(used_memory_rss),此时,mem_fragmentation_ratio 就是 1.28。
那么,知道了这个指标,我们该如何使用呢?
在这儿,我提供一些经验阈值:
mem_fragmentation_ratio 大于 1 但小于 1.5。这种情况是合理的。这是因为,刚才我介绍的那些因素是难以避免的。毕竟,内因的内存分配器是一定要使用的,分配策略都是通用的,不会轻易修改;而外因由 Redis 负载决定,也无法限制。所以,存在内存碎片也是正常的。
mem_fragmentation_ratio 大于 1.5 。这表明内存碎片率已经超过了 50%。一般情况下,这个时候,我们就需要采取一些措施来降低内存碎片率了。
如何清理内存碎片?
当 Redis 发生内存碎片后,一个“简单粗暴”的方法就是重启 Redis 实例。当然,这并不是一个“优雅”的方法,毕竟,重启 Redis 会带来两个后果:
如果 Redis 中的数据没有持久化,那么,数据就会丢失;
即使 Redis 数据持久化了,我们还需要通过 AOF 或 RDB 进行恢复,恢复时长取决于 AOF 或 RDB 的大小,如果只有一个 Redis 实例,恢复阶段无法提供服务。
幸运的是,从 4.0-RC3 版本以后,Redis 自身提供了一种内存碎片自动清理的方法,我们先来看这个方法的基本机制。内存碎片清理,简单来说,就是“搬家让位,合并空间”。
不过,需要注意的是:
碎片清理是有代价的,操作系统需要把多份数据拷贝到新位置,把原有空间释放出来,这会带来时间开销。因为 Redis 是单线程,在数据拷贝时,Redis 只能等着,这就导致 Redis 无法及时处理请求,性能就会降低。而且,有的时候,数据拷贝还需要注意顺序,就像刚刚说的清理内存碎片的例子,操作系统需要先拷贝 D,并释放 D 的空间后,才能拷贝 B。这种对顺序性的要求,会进一步增加 Redis 的等待时间,导致性能降低。
那么,有什么办法可以尽量缓解这个问题吗?
Redis 专门为自动内存碎片清理功机制设置的参数了。我们可以通过设置参数,来控制碎片清理的开始和结束时机,以及占用的 CPU 比例,从而减少碎片清理对 Redis 本身请求处理的性能影响。首先,Redis 需要启用自动内存碎片清理,可以把 activedefrag 配置项设置为 yes,命令如下:
config set activedefrag yes
这个命令只是启用了自动清理功能,但是,具体什么时候清理,会受到下面这两个参数的控制。这两个参数分别设置了触发内存清理的一个条件,如果同时满足这两个条件,就开始清理。在清理的过程中,只要有一个条件不满足了,就停止自动清理。
active-defrag-ignore-bytes 100mb:表示内存碎片的字节数达到 100MB 时,开始清理;
active-defrag-threshold-lower 10:表示内存碎片空间占操作系统分配给 Redis 的总空间比例达到 10% 时,开始清理。
为了尽可能减少碎片清理对 Redis 正常请求处理的影响,自动内存碎片清理功能在执行时,还会监控清理操作占用的 CPU 时间,而且还设置了两个参数,分别用于控制清理操作占用的 CPU 时间比例的上、下限,既保证清理工作能正常进行,又避免了降低 Redis 性能。这两个参数具体如下:
active-defrag-cycle-min 25: 表示自动清理过程所用 CPU 时间的比例不低于 25%,保证清理能正常开展;
active-defrag-cycle-max 75:表示自动清理过程所用 CPU 时间的比例不高于 75%,一旦超过,就停止清理,从而避免在清理时,大量的内存拷贝阻塞 Redis,导致响应延迟升高。
自动内存碎片清理机制在控制碎片清理启停的时机上,既考虑了碎片的空间占比、对 Redis 内存使用效率的影响,还考虑了清理机制本身的 CPU 时间占比、对 Redis 性能的影响。而且,清理机制还提供了 4 个参数,让我们可以根据实际应用中的数据量需求和性能要求灵活使用,建议你在实践中好好地把这个机制用起来。
合理使用Redis 缓存有淘汰策略
Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略。我们可以按照是否会进行数据淘汰把它们分成两类:
不进行数据淘汰的策略,只有 noeviction 这一种。
会进行淘汰的 7 种其他策略。
会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:
在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfu(Redis 4.0 后新增)四种。
在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfu(Redis 4.0 后新增)三种。
默认情况下,Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略。对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。Redis 用作缓存时,实际的数据集通常都是大于缓存容量的,总会有新的数据要写入缓存,这个策略本身不淘汰数据,也就不会腾出新的缓存空间,我们不把它用在 Redis 缓存中。
volatile-random、volatile-ttl、volatile-lru 和 volatile-lfu 这四种淘汰策略。它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除。
例如,我们使用 EXPIRE 命令对一批键值对设置了过期时间后,无论是这些键值对的过期时间是快到了,还是 Redis 的内存使用量达到了 maxmemory 阈值,Redis 都会进一步按照 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略的具体筛选规则进行淘汰。
volatile-ttl 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
volatile-random 就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
volatile-lru 会使用 LRU 算法筛选设置了过期时间的键值对。
volatile-lfu 会使用 LFU 算法选择设置了过期时间的键值对。
相对于 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略淘汰的是设置了过期时间的数据,allkeys-lru、allkeys-random、allkeys-lfu 这三种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。它们筛选数据进行淘汰的规则是:
allkeys-random 策略,从所有键值对中随机选择并删除数据;
allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。
allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。
这也就是说,如果一个键值对被删除策略选中了,即使它的过期时间还没到,也需要被删除。当然,如果它的过期时间到了但未被策略选中,同样也会被删除。接下来,我们就看看 volatile-lru 和 allkeys-lru 策略都用到的 LRU 算法吧。LRU 算法工作机制并不复杂,我们一起学习下。LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。那具体是怎么筛选的呢?LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。我们看一个例子。
我们现在有数据 6、3、9、20、5。如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端,而链表中在它们之前的数据则相应地往后移一位。因为,LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。
如果有一个新数据 15 要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU 算法做两件事:
数据 15 是刚被访问的,所以它会被放到 MRU 端;
算法把 LRU 端的数据 5 从缓存中删除,相应的链表中就没有数据 5 的记录了。
LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。
Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数 N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:
CONFIG SET maxmemory-samples 100
当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。这样一来,Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。
除了使用 LFU 算法以外的 5 种缓存淘汰策略,这里有三个使用建议。
优先使用 allkeys-lru 策略。这样,可以充分利用 LRU 这一经典缓存算法的优势,把最近最常访问的数据留在缓存中,提升应用的访问性能。如果你的业务数据中有明显的冷热数据区分,我建议你使用 allkeys-lru 策略。
如果业务应用中的数据访问频率相差不大,没有明显的冷热数据区分,建议使用 allkeys-random 策略,随机选择淘汰的数据就行。
如果你的业务中有置顶的需求,比如置顶新闻、置顶视频,那么,可以使用 volatile-lru 策略,同时不给这些置顶数据设置过期时间。这样一来,这些需要置顶的数据一直不会被删除,而其他数据会在过期时根据 LRU 规则进行筛选。