关于计算n阶行列式经典题目,计算n阶行列式这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!
1、方法1 归纳法按照第一列展开。
2、得到递推关系式D = (α+β)Dn-1 - αβDn-2 (要求n≥3)假设α≠βD1 = α+β = (α平方 - β平方) / (α-β)D2 = α平方 +αβ+ β平方 = (α立方 - β立方) / (α-β)D3 = (α+β)(α平方 + β平方) = (α四次方 - β四次方) / (α-β)设Dn-1 = (αn次方 - βn次方) / (α-β)则Dn = (α+β)Dn-1 - αβDn-2 =......=(α{n+1}次方 - β{n+1}次方) / (α-β)数学归纳法 Dn = (α{n+1}次方 - β{n+1}次方) / (α-β)当 α=β可直接计算得到 Dn = (n+1) × α的n次方 = (n+1) * α的n次方 方法2 递推法根据Dn = (α+β)Dn-1 - αβDn-2 得Dn -αDn-1 = β(Dn-1 - αDn-2) =β平方(Dn-2 - αDn-3) =...... =β的(n-2)次方 * (D2 - αD1) =β的n次方 ① Dn -βDn-1 = α(Dn-1 - βDn-2) =α平方(Dn-2 - Dn-3) =...... =α的(n-2)次方 * (D2 - βD1) =α的n次方 ②当 α≠β时, β×① - α×②得到 Dn = (n+1) × α的n次方当 α=β时, 直接由 ① 或者②得到 Dn = α的n次方 + αD(n-1) = α的n次方 + α(α的n-1次方 - αD(n-2)) = 2α的n次方 + α平方*D(n-2) =...... = (n-2)α的n次方 + α的(n-2)次方*D2 = (n+1) × α的n次方 方法3 打字写公式实在麻烦啊,算了。
本文到此分享完毕,希望对大家有所帮助。