缓存不一致性
1. 引用缓存的好处
1)减缓数据库压力;
2)提高系统并发处理能力
2. 引用缓存的问题
1)处理逻辑变得复杂;
2)使用不当,容易引起缓存和数据库数据不一致的问题
3. 数据不一致的原因
缓存操作与数据库操作不是原子操作,当一方操作成功、另一方操作失败时就会造成数据不一致问题。
4. 更新策略
1) 先更新数据库,再更新缓存
2) 先删除缓存,再更新数据库
3) 先更新数据库,再删除缓存
4.1先更新数据库,再更新缓存
这种方式会出现线程安全问题。
例如,同时有请求A和请求B进行更新操作,那么会出现
(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存
这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。
4.2先删缓存,再更新数据库
该方案会导致不一致的原因是。同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。
那么,如何解决呢?采用延时双删策略
伪代码如下
public void write(String key,Object data){ Redis.delKey(key); db.updateData(data); T(1000); redis.delKey(key); }
转化为中文描述就是
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这么做,可以将1秒内所造成的缓存脏数据,再次删除。
那么,这个1秒怎么确定的,具体该休眠多久呢?
针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
采用这种同步淘汰策略,吞吐量降低怎么办?
那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。
4.3先更新数据库,再删缓存
假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生
(1)缓存刚好失效
(2)请求A查询数据库,得一个旧值
(3)请求B将新值写入数据库
(4)请求B删除缓存
(5)请求A将查到的旧值写入缓存
如果发生上述情况,确实是会发生脏数据。
发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。
一定要解决怎么办?如何解决上述并发问题?
首先,给缓存设有效时间是一种方案。其次,采用策略(2)里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。
4.4还有其他造成不一致的原因么?
删缓存失败了,这会就出现不一致的情况了。
关于于删除失败导致的数据不一致的解决方案大概有以下几种:
1. 对删除缓存进行重试,数据的一致性要求越高,我越是重试得快。
2. 定期全量更新,简单地说,就是我定期把缓存全部清掉,然后再全量加载。
3. 给所有的缓存一个失效期,任何不一致,都可以靠失效期解决,失效期越短,数据一致性越高。但是失效期越短,查数据库就会越频繁。因此失效期应该根据业务来定。
4.5基于订阅binlog的同步机制实现重试
阿里巴巴的一款开源框架canal,提供了一种发布/ 订阅模式的同步机制,通过该框架我们可以对MySQL的binlog进行订阅,这样一旦MySQL中产生了新的写入、更新、删除等操作,就可以把binlog相关的消息推送至Redis,Redis再根据binlog中的记录,对Redis进行更新。
流程如下图所示:
(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作。