您的位置 首页 > 数码极客

【不属于符号】集合和常用逻辑用语~常用符号总结

一、集合符号

1、集和元素之间

符号“”的意思是“拥有”。符号“”表示“不属于”,符号“P(x)”表示“元素x具有属性P”。

设 A 是集合, x 是元素 。例如:

x ∈ A : 表示元素 x 属于 A 。

x ∉ A :表示元素 x 不属于 A 。

{x∣x∈A, P(x) } :表示集合 A 中具有性质 P 的元素 x 的全体 。

2、集合之间

符号“ㄷ” 表示 “包含” ;符合 “=” 表示 “相等”;符合“∅”表示 “空集”;

符号 “∪”表示 “并” 或 “和” ;符号 “∩”表示 “交” 或 “乘” ;

符合 “-” 表示 “差” 或 “余” 。

设 A 与 B 是两个集合 ,例如 :

A ㄷB :表示 A 中的任意元素 x 都是 B 的元素,或 A 是 B 的子集,或 A 被 B 包含 。

A = B :表示 A 与 B 相等 ,即 A ㄷB 同时 B ㄷA 。

A∪B :表示 A 与 B 的并集或和集,即 A∪B = {x ∣x∈A 或 x∈B } 。

A∩B :表示 A 与 B 的交集或积集,即 A∩B = {x ∣x∈A 同时 x∈B } 。

A - B :表示 A 与 B 的差集或余集,即 A - B = {x ∣x∈A 同时 x∉ B } 。

二、数集符号

R :表示 “实数集” ;Q:表示 “有理数集” ;Z:表示 “整数集” ;N+ :表示 “正整数集”。

N+ ㄷ Z ㄷ Q ㄷ R 。

1、区间 (a , b ∈ R , 且 a < b)

① 有限区间

(a , b):表示 “开区间” , {x ∣a < x < b } 。

[ a , b ] :表示 “闭区间” , {x ∣a ≤ x ≤ b } 。

(a , b ] :表示 “半开区间” , {x ∣a < x ≤ b } 。

[ a , b):表示 “半开区间” , {x ∣a ≤ x < b } 。

② 无限区间

(a , + ∞):表示 “开区间” , {x ∣a < x } 。

[ a , + ∞ ] :表示 “闭区间” , {x ∣a ≤ x } 。

(- ∞ , a ) :表示 “开区间” , {x ∣x < a } 。

[ - ∞ , a ]:表示 “闭区间” , {x ∣x ≤ a } 。

三、逻辑符号

1、连词符号

连词符号图(1)

设 A ,B 是两个陈述句,可以是条件,也可以是命题。例如:

连词符号图(2)

连词符号图(3)

2、量词符号

量词符号图(1)

应用上述的数理逻辑符号表述定义、定理比较简练明确。

例如:数集 A 有上界、有下界和有界的定义:

量词符号图(2)

四、其它符号

符号 “max” 表示 “最大” ;

符号 “min” 表示 “最小” 。

其它符号图(1)

符号 “n!” 表示 “ n 的阶乘 ”,即:n! = n · ( n - 1 ) ··· 3 · 2 · 1 ;

例如:5! = 5 · 4 · 3 · 2 · 1 ,规定:0!= 1 。

其它符号图(2)

欢迎关注头条号“尚老师数学”!

关于作者: admin

无忧经验小编鲁达,内容侵删请Email至wohenlihai#qq.com(#改为@)

热门推荐