谁说数学是枯燥的?在数学里,有很多有趣而又深刻的数学定理,不但深受数学家们的喜爱,在数学迷的圈子里也广为流传。
一、喝醉的小鸟
定理:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家。
假设有一条水平直线,从某个位置出发,每次有 50% 的概率向左走1米,有50%的概率向右走1米。按照这种方式无限地随机游走下去,最终能回到出发点的概率是多少?答案是100% 。在一维随机游走过程中,只要时间足够长,我们最终总能回到出发点。
现在考虑一个喝醉的酒鬼,他在街道上随机游走。假设整个城市的街道呈网格状分布,酒鬼每走到一个十字路口,都会概率均等地选择一条路(包括自己来时的那条路)继续走下去。那么他最终能够回到出发点的概率是多少呢?答案也还是 100% 。刚开始,这个醉鬼可能会越走越远,但最后他总能找到回家路。
不过,醉酒的小鸟就没有这么幸运了。假如一只小鸟飞行时,每次都从上、下、左、右、前、后中概率均等地选择一个方向,那么它很有可能永远也回不到 出发点了。事实上,在三维网格中随机游走,最终能回到出发点的概率只有大约 34% 。
这个定理是著名数学家波利亚(George Pólya)在 1921 年证明的。
随着维度的增加,回到出发点的概率将变得越来越低。在四维网格中随机游走,最终能回到出发点的概率是 19.3% ,而在八维空间中,这个概率只有 7.3% 。
二、“你在这里”
定理:把一张当地的地图平铺在地上,则总能在地图上找到一点,这个点下面的地上的点正好就是它在地图上所表示的位置。
也就是说,如果在商场的地板上画了一张整个商场的地图,那么你总能在地图上精确地作一个“你在这里”的标记。
1912 年,荷兰数学家布劳威尔(Luitzen Brouwer)证明了这么一个定理:
假设 D 是某个圆盘中的点集,f 是一个从 D 到它自身的连续函数,则一定有一个点 x ,使得 f(x) = x 。换句话说,让一个圆盘里的所有点做连续的运动,则总有一个点可以正好回到运动之前的位置。这个定理叫做布劳威尔不动点定理(Brouwer fixed point theorem)。
除了上面的“地图定理”,布劳威尔不动点定理还有很多其他奇妙的推论。
如果取两张大小相同的纸,把其中一张纸揉成一团之后放在另一张纸上,根据布劳威尔不动点定理,纸团上一定 存在一点,它正好位于下面那张纸的同一个点的正上方。
这个定理也可以扩展到三维空间中去:当你搅拌完咖啡后,一定能在咖啡中找到一个点,它在搅拌前后的位置相同(虽然这个点在搅拌过程中可 能到过别的地方)。
三、不能抚平的毛球
定理:你永远不能理顺椰子上的毛。
想象一个表面长满毛的球体,你能把所有的毛全部梳平,不留下任何像鸡冠一样的一撮毛或者像头发一样的旋吗?拓扑学告诉你,这是办不到的。这叫做毛球定理(hairy ball theorem),它也是由布劳威尔首先证明的。用数学语言来说就是,在一个球体表面,不可能存在连续的单位向量场。这个定理可以推广到更高维的空间:对于任意一个偶数维的球面,连续的单位向量场都是不存在的。
毛球定理在气象学上有一个有趣的应用:由于地球表面的风速和风向都是连续的,因此由毛球定理,地球上总会有一个风速为 0 的地方,也就是说气旋和风眼是不可避免的。
四、平分三明治
定理:任意给定一个火腿三明治,总有一刀能把它切开,使得火腿、奶酪和面包片恰好都被分成两等份。
而且更有趣的是,这个定理的名字真的就叫做“火腿三明治定理”(ham sandwich theorem)。它是由数学家亚瑟•斯通(Arthur Stone)和约翰•图基(John Tukey)在 1942 年证明的,在测度论中有着非常重要的意义。
火腿三明治定理可以扩展到 n 维的情况:
如果在 n 维空间中有 n 个物体,那么总存在一个 n - 1 维的超平面,它能把每个物体都分成“体积”相等的两份。这些物体可以是任何形状,还可以是不连通的(比如面包片),甚至可以是一些奇形怪状的点集,只要满足点集可测就行了。
五、分球悖论
巴拿赫-塔斯基悖论,又称分球悖论,是一条经过严格证明的数学定理。
一个三维实心球,必定存在一种办法分成有限部分,然后仅仅通过旋转和平移,就可以组成两个和原来完全相同的球(半径相同,密度相同……所有性质都相同)。这是一条非常反常识的数学定理,基于“选择公理”严格地推导出来,而且不容置疑。
这个定理还有更强的版本描述:一块石头经过分解,可以随意组合成任何东西,可以拼成一个星球,也可以拼成一个人,甚至藏进一个细胞之中!
要理解其中的原理,需要对“无穷”这个概念有深刻的理解:
这个比喻,是对“无穷”的一个通俗解释,分球悖论也可以通过这个比喻来解释。
我们来类比,“球分成无限份”相当于“旅馆的无限个房间“,把这无限个房间分成偶数和奇数两类,我们再单独把这两类房间分开,分别称为“希尔伯特旅馆一”和“希尔伯特旅馆二”。
如果我们不看序号,或者把两个旅馆的房间重新编号,请问:这两个新的旅馆,和原来的“希尔伯特旅馆”有区别吗?
答案是:没有区别,两个新旅馆,和原来的旅馆一摸一样,房间数一样,每个房间的大小也一样。
分球悖论指出:实心球也存在这样的分解办法,然后进行分类和重组,就能变“一”为“二”;两者本质上是一样的。
有人可能会觉得,新的实心球,质量肯定变为原来的一半!
其实不是的,因为在无穷面前,分球悖论并不满足质量守恒,比如我们假设每个单元的质量为Δm(无穷小),在我们分类的时候,Δm并没有被分解,我们分解的是“∞“。
在数学中,“可数∞”的一半,还是“可数∞”,于是,我们确实得到了两个,和原来一模一样的实心球。
或许,这正是数学和大自然,完美统一的表现。
如果发现你的孩子对数学不感兴趣、学习吃力,想要帮孩子找到更好的学习数学的方法,提升成绩!
现在可以联系深本数学创始人邹老师,共同探讨学习成功之道,也可以获取邹老师分享的多年学习资料!(获取方式:私信)