您的位置 首页 > 数码极客

微积分什么时候学、多变量微积分什么时候学

今天给大家给推荐一本微积分入门科普读物《简单微积分:学校未教过的超简易入门技巧》,该书以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。

该书的作者神永正博,之前介绍过他的另一本《数学思考法:解析直觉与谎言》也是一本非常不错的数学科普读物。

以下是我们的摘录该书部分内容,已获「图灵新知」授权。

前言

如书名所示,本书是一本微积分入门书。虽然是入门书,不过写到后面,却发现内容已经相当有深度。

这样的话,或许你会想:“是不是先得准备纸和铅笔?”

不用,我们不需要纸和铅笔。本书是一本只需要“读”的微积分入门书。请轻松地来阅读吧。

说起微积分,大家有什么印象?想必很多人会联想到棘手的计算吧。甚至还会有人想到这种情景——在学校的考试中,只是因为计算稍稍出错,就被大幅扣分,凄惨至极。

哎呀,这位姑娘似乎认为解决微积分问题,只要套用背诵的公式就足够了。这就是那种在学校的考试中掌握了应试要领的典型人物。

不过,对于如何看待微积分,还存在像上面这位博士一样的一类人,他们的看法在某种意义上略显偏激。这种人在学校里可能难以被认可,不过在社会中似乎能生存下去。

本书讲解微积分选择的是这位博士的立场。因为我认为,虽然会计算微积分更好,但最开始学习微积分时,重点并不在计算上。

数学家是擅长数学的人,所以他们也很擅长计算吧?不,不一定是这样的。令人意外的是,数学家不仅会有不少单纯的计算失误,而且也常常会在思路上出现错误。

创立了组合拓扑学的天才数学家亨利•庞加莱也是经常犯错误的,据说就连他的论文中也存在不少错误。

但是,庞加莱思考的方向在本质上是准确无误的。只要思考的方向正确,即使稍微出点儿差错,对整体而言也并不是致命的。在学校,考试之所以依据计算结果的正确与否来确定成绩,是因为根据思路来给分数比较困难。

我喜欢南方的国家,2010 年曾在印度生活了一年。在金奈(Chennai,旧称 Madras)的一所数理科学研究所做研究时,深深吸引我的不仅是印度这个国家,还有印度人的研究方法。

其中令人惊讶的是,印度的研究者不怎么计算。当然,并不是完全不计算,而是与计算相比,他们在思考上花费的时间更长。我甚至怀疑他们这样是不是为了节约纸。“只要有纸和铅笔能够做研究”是数学家的口头禅,但是印度人可能会笑道:“难道最重要的不是用脑子吗?”在印度的经历让我切身体会到,数学研究中使用的是头脑。

印度数学家是在头脑中计算的吗?毕竟他们可是一群能够背诵20×20 的乘法口诀表的人。你可能会认为,他们用心算来计算肯定是小菜一碟。

但是,事实并非如此。印度的数学家会凭感觉来思考。在进行最后计算之前,他们首先用感觉思考,寻找正确的解题思路,这个阶段非常重要。如果能在思考阶段找到正确思路,之后总会有办法解决计算问题。

同样,本书的侧重点也放在了“思考的要领”上,我认为这是微积分的本质。比如,第 1 章中几乎没有出现积分符号。你可能会担心,不用积分符号的话是否能够真正理解相关内容。其实,先在第 1 章中接触微积分的本质内容,第 2 章之后出现的公式、算式将会意外地变得易于理解。

略微谈点儿抽象的内容,其实微积分的本质在于方法。简单说,如果抓住思考的“要领”,那么就能轻而易举地理解复杂算式。思考的方向找对了,之后只要根据需求掌握计算技术就可以了。相反,如果不能掌握思考要领,直接从计算技术入手的话,微积分的学习便如同咀嚼沙子一般变成了苦涩的修行。

即便你对计算不是特别明白,也没必要在意;或者一点儿也不明白,也没有关系。让我们放松下来,轻松地去探索微积分的本质吧!

以下是该书的第一章第一节。

积分存在的意义

积分应用的基础

小学所学的图形面积、体积的计算,实际上是与积分世界相连通的。积分并不是高中教材中突然半路杀出的“程咬金”,初等教育中相关内容的学习,已经为迈入积分世界做了充分的热身。

而对于微分,大部分人都感觉不是很熟悉。说起微分,就会提到“切线斜率”“瞬时速度”“加速度”,这些内容怎么理解

都很难懂。这些东西我们无法直接用眼睛看到,很难直观上去把握。

从历史上来看,积分比微分要更早出现。

积分法的起源是“测量图形的大小”。古时候图形长度、面积、体积的计算方法,通过口传心授得以流传,经过历代人的智慧的锤炼,进而发展成为现在的积分法。

探寻积分法诞生的历史,大致可以追溯到公元前1800年左右。公元前200年的阿基米德时代,在计算抛物线和直线围成的图形面积问题上,已经出现了与现在积分法十分相似的“穷举法”。积分的历史,还真是悠久。

到了12世纪,印度的婆什迦罗二世提出了积分法的“前身”方法。进入17世纪,牛顿综合了微分法和积分法,尝试从万有引力理论来推导天体的运动规律。

总之,从积分出现到微分诞生,至少有长达1300年的间隔。

积分之所以会较早出现,是因为人类需要把握那些可见的东西,例如计算物体的面积、体积等。

初等教育中的图形计算,通常只针对长方形、圆形等规规矩矩的图形。而现实情况中,这些知识往往难以直接去应用。

这是因为,现实世界中存在的物质,并非都是学校中学习的那些规则的形状。相反,那些规则的形状可以说只是例外或理想化的情况。所以,对人类而言,测量现实情况中各种复杂图形大小的技术非常必要。

日本小学的家政课会讲授乌冬面、土豆块等简易料理的烹饪方法。之所以特地在学校中讲授这些内容,是因为这些都是烹饪中的基础方法。实际上我们自己做菜时,多会在商店中购买成品的乌冬面,也基本不会频繁烹制土豆块。但是,如果掌握了这些基础烹饪方法的话,就能够烹制出更多复杂的菜品。例如,乌冬面的烹饪方法可以运用到面包、比萨或者意大利面中,从土豆块中学到的方法可以拓展到土豆沙拉或者油炸饼中。

如果把在小学初中学的长方形、圆形的知识比作乌冬面、土豆块,那么微积分就相当于面包、土豆沙拉等应用性料理。多亏有了积分法,人类才能够计算各种图形的面积和体积。使用积分,无论是多么奇怪的形状,只要下功夫就能够计算出结果,这真是巨大的进步。

将思考应用于实际,用自己的力量去推导面积、体积,这才是积分的乐趣,也是学习积分的真正意义。

所有图形都与长方形相通

图形的种类纷繁多样,其中面积计算最为简单的就是“长方形”了。

说到这里,大家是不是想起了小学时初学面积计算的情景?在图形面积计算中,三角形、平行四边形、梯形、圆形等图形都是放到长方形之后学习。长方形的面积仅用“长×宽”就可以计算,可以说是最简单、朴素的图形。顺便提一下,在数学世界中,正方形被看作是“一种特殊的长方形”。

掌握长方形面积的计算方法后,就可以将其应用到三角形的面积计算中。反过来说,如果不知道长方形面积的计算方法,也就无法计算三角形的面积。

这是因为,三角形的面积可以看作是“以三角形的一条底边为边长、该边上的高为另一边的长方形面积的一半”。根据图2可知,三角形的面积正好是对应长方形面积的一半,也就是说“三角形的面积=底×高÷2”。

那平行四边形是什么情况呢?平行四边形可以看作是两个以平行四边形的边为底边的三角形的组合。

梯形的情况又如何呢?梯形可以看作平行四边形的一半。如图4所示,两个相同的梯形并列组合形成了平行四边形。因此,梯形的面积也是以长方形为基础计算的,为“(上底+下底)×高÷2”。

从三角形到平行四边形,再到梯形,虽然这三个图形看上去没什么直接关联,但它们的面积公式都是以长方形面积为基础推导出来的。

近似的方法

在小学算术课上,大家有没有做过下面这样的事情呢?如图5所示,用圆规在方格纸上画一个圆,然后数出圆中方格的个数。之后,再画几个大小不同的圆,并数出这些圆中方格的个数。

这项作业实际上与圆的面积公式相关。圆的面积公式是“半径×半径×3.14”,其中的3.14是圆周率的近似值,而“尝试数方格的个数”就是一种讲解圆周率推导的方法。

在这里,我们来重新回顾一下这种方法。

先来数一数图6中,半径为2 cm的圆中有多少个方格3(方格的边长为1 mm)。虽然这种方法有些不精确,但是能让小学生更容易理解。

图6圆中的方格共有1189个,用面积表示的话为11.89 cm2

圆的面积公式是“半径×半径×圆周率”。在方格实验中,我们的目的是求圆周率,所以可以把这个公式变形,得到“圆周率=面积÷(半径×半径)”。在图6的例子中,圆的半径为2,所以用面积除以2的2次方4,得出圆周率为2.972 5。

与3.14相比,这个结果太小了。虽然有些遗憾,但实验就是这样的。即便如此,我们也会明白一件事情,即“圆周率,也就是π,粗略来说是接近3的数”。

再细分方格或者把圆变大的话,圆内方格面积的和,就会逐渐接近圆面积公式“半径×半径×3.14”,也就是说,圆周率

会逐渐接近3.14。像这样,把圆的面积替换成方格的数量,逐渐求得接近待求值的方法叫作“近似”。我在小学时也做过这个实验,数十年后的今天,我仍然清晰记得努力数完方格得出答案后,内心中洋溢的满足感。

顺便说一下,或许有人会产生以下疑问。

博士的回答是老师的常用手段,但是稍微有些糊弄的成分。因为这种回答还会遗留下面的疑问。

“不在意这些缝隙”具体是什么意思?事实上,不管是在意还是不在意,缝隙总是会存在的,不是吗?

这个疑问看上去似乎很无聊,但在高等数学中却是一个很有意思的问题。从结论上来讲,为了解决上述疑问,我们有必要使用“夹逼定理”(两边夹定理),从圆的内部和外部都取近似来研究图形。即先计算出“圆内部的方格数”对应的圆周率,然后再用同样的方法,计算出“包含圆边界的方格数”(内部方格数加包含圆边界的方格数)对应的圆周率。这样一来,我们可以得到下面的结论:

圆内部方格数对应的圆周率 < 圆实际的圆周率 < 包含圆边界的方格数对应的圆周率

如果将方格不断替换为更小的方格,“圆内部方格数对应的圆周率”和“包含圆边界的方格数对应的圆周率”,二者的数值会慢慢接近,都接近圆实际的圆周率,这就是“夹逼定理”。

如果对“夹逼定理”感兴趣,可以再读一读《微积分强化读本》(柴田敏男著/讲谈社)等书,可以从中获得一些专业知识。

本书中此话题暂且到此为止。在微积分中,不拘小节的精神同样重要。

图7是小方格组成的与圆近似的图形。左边是大方格,右边是小方格。通过这两个图大概可以明白“把粗糙的图形精细化,就会接近实际图形(圆)”。精度非常高的锯齿状图形,实际上很难在视觉上与平滑图形区分出来。

电视、电脑的液晶显示器,都是使用这个原理来显示画面的。液晶显示器显示的画面实际上是锯齿状的。但是显示器中锯齿的精细度非常高,所以我们眼中看到的就是平滑的线了。

我们也可以这样说,圆形实际上是由无数精细小方格组成的锯齿状图形,即圆形是锯齿状图形的“极限”。像这样,“近似”在数学中是极其好用的方法。

如果执着于完美再现平滑的线,那么就不会出现液晶显示器吧。多亏了非完美主义的近似方法,才诞生了划时代的技术。

和变为了积分

计算圆的面积时,小学中采用的方法是用“正方形”来划分圆的内部空间。这样做的原因实际上很简单,就是因为方格纸的方格是正方形。

求圆的面积,要领是精细地划分圆。也就是说,划分的形状应该不限于正方形。因此,我们可以把圆分成“细长的短条”来求面积。比如图8,我们尝试把圆分成细长的短条,也就是长方形的组合。

虽说如此,但既然说到了符号,从现在开始我们就尝试使用积分符号吧。公式也会从此处开始出现,不过内容和刚才的讲解是完全一致的,所以请轻松地读下去。和业界人士使用行业术语讲话一样,使用数学符号讲解数学,相同的内容在表达上也会看起来非常优雅。

在图9中,我们把圆裁切成非常窄的短条。水平方向为x轴。这时,圆的裁切方向和x轴正好是垂直关系。

在此基础之上,我们选取一条宽度为Δx的短条。Δ是希腊字母,读作“德尔塔”(Delta),多用作“差”(difference)的符号,表示非常小的数值。

现在,我们用公式来表示这条短条的面积。

短条的面积=短条在x值对应的长度×Δx

若问为什么要算出短条面积,这是因为我们要从这里开始计算圆的面积。把这些细长短条的面积相加,就是圆的面积。具体来说,把从左端到右端的短条全部相加就可以了。

在这里,我们逐渐缩小短条的宽度,缩小到再也不能缩小的程度。这样一来,短条与其说是长方形,倒不如说看起来更像“一条线”。无数根“线”相加,其结果逐渐接近“圆的面积”。用积分符号来表示的话,可以写成以下形式。

公式中那个像把字母S纵向拉长的符号音同integral(积分)。积分原本就是“和”的意思,因此积分符号也是取自拉丁语中“和”的单词Summa的首字母S。这是一位叫作莱布尼茨的数学家(兼哲学家)提出的。

在此简单补充一点儿德尔塔(Δ)和d的内容。

Δ和d,这两个符号都源于“差”(difference)。二者的不同之处在于,Δ是“近似值”,而英文小写字母d是“精确值”。

“精确值”是什么意思呢?例如圆周率π,3.14是其近似值,无限循环的3.141 592 653 589 793 238 462 643 383 279…就是其“精确值”。近似值在某种情况下必定是不正确的,而精确值在任何情况下都是正确的。

所以,我们可以这样理解dx:“将原本用短条宽度Δx计算的数值,看作趋向于0的‘精确值’。”

总结一下,德尔塔(Δ)和英文小写字母d分别在以下情况中使用。

另外,虽然微积分中会出现各种各样的公式、符号,不过初学者最开始不太理解这些东西也没有关系,对Δ和d也同样如此。

何为“接近精确值”

我们将短条的宽度不断缩小,然后尝试计算圆的面积。为了便于之后的计算,假设圆的半径为1 cm(图10)。如果在这个圆的内部排列短条并计算其总面积,结果会怎么样呢?

在这里,设短条的条数为N。用直径2(半径为1,直径是半径的2倍,所以直径为2)除以短条的条数(N),就能够得出每一条短条的宽度Δx。也就是说,Δx是

宽度为Δx的短条的面积总和,在短条条数(N)增加时会如何变化呢?我们来实际确认一下。逐一计算不同条数下所有短条的总面积很麻烦,不过使用计算机的话可以一下子解决,结果如表1所示。

在表1中,我们计算了短条数从10条到20 000条时的短条总面积。条数(N)为20 000时,每条短条的宽度Δx是半径的1/10 000,只有0.000 1 cm。

我们从表1的结果中可以发现,条数为10时,总面积是2.637 049,这个数值和3.14…迥然不同;当条数为20 000时,总面积则成了3.141 391。怎么样?是不是可以切实感受到,当短条的条数增加时,短条的总面积会逐渐接近3.141 592 6…=π。

另外,虽然短条宽度为0.000 1 cm已经是纤细至极,但在分割图形时并不算是“精细”的尺度。实际计算积分时,会使用比0.000 1 cm更精细、更接近0的尺度。

作者简介

神永正博(Kunihiko Kodaira) 1967年出生于东京,理学博士,日本东北学院大学教授。曾在京都大学研究生院理学研究所(数学方向)进行博士后期课程学习。主要研究方向为解析学(作为量子力学基础方程式的薛定谔方程)以及密码理论。主要著作有《看穿谎言的统计学》《数学思考法》,另外审阅翻译的著作有《漫画统计学入门》等。

微积分的本质在于方法。简单说,如果抓住思考的“要领”,那么就能轻而易举地理解复杂算式。相反,如果不能掌握思考要领,直接从计算技术入手的话,微积分的学习便如同咀嚼沙子一般变成了苦涩的修行。

——神永正博

目录及更多

简单微积分

学校未教过的超简易入门技巧

向上滑动阅览简介及目录

本书为微积分入门科普读物,书中以微积分的思考方法为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需轻松阅读便可以理解微积分原理的入门书。

目录:

第 1章 积分是什么 1

积分的存在意义 2

积分应用的基础 2

所有图形都与长方形相通 5

近似的方法 8

和变为了积分 13

何为“接近精确值” 18

两个思想实验 20

椭圆的面积 20

地球的体积 25

切口的秘密 32

卡瓦列利原理 32

三分之一的原理 37

圆锥的体积 45

球的体积 48

球的表面积 54

感觉和逻辑 59

初中入学考试中的积分 59

像小学生那样求圆环体体积 67

把甜甜圈变成蛇的方法 69

帕普斯-古尔丁定理 73

第 2章 微分是什么 77

微分存在的意义 78

分析钻石的价格 78

“亮出指数”的理由 86

乘积的微分公式 94

从未知到已知 97

商的微分公式 100

再次扩展幂函数的微分公式 102

丰富多彩的函数世界 105

山峰和山谷 105

了解切线 109

根据单调性表画函数图像 113

最大值和最小值、极大值和极小值 117

手绘函数图像的意义 119

存在休息平台的函数 121

有预谋地使用微分 128

理想的冰激凌蛋卷筒 128

忽略与不可忽略的界线 138

第3章 探寻微积分的可能性 141

1800年后的真相 142

反军队式学习法 142

伟大的发现会成为未来的常识 144

基本定理的使用方法 152

填坑 160

自然常数从何而来 160

无限接近于最确的值 164

关键在于根号 166

转换思路能行得通吗 169

指数函数出现了 175

让关系更清晰 178

唯一个微分后不会发生变化的函数 181

弯曲也没问题 184

测量曲线的长度 184

简洁的悬链线公式 187

验证项链的长度 194

微积分的真身 199

微分的可能性 199

微分相关的冒险 202

近似和忽略 205

后记 207

尾注 209

好玩的数学

微信号:mathfun

好玩的数学以数学学习为主题,以传播数学文化为己任,以激发学习者学习数学的兴趣为目标,分享有用的数学知识、有趣的数学故事、传奇的数学人物等,为你展现一个有趣、好玩、丰富多彩的数学世界。

点阅读原文购买《简单微积分》。

关于作者: admin

无忧经验小编鲁达,内容侵删请Email至wohenlihai#qq.com(#改为@)

热门推荐