第一,为什么要使用分布式ID?
在谈分布式ID的具体实现之前,我们先简单分析一下使用分布式ID的原因。分布式ID需要满足哪些特征?
1、什么是分布式ID?
用MySQL数据库举个栗子。
当业务数据量不多时,单个库表单可以完全支持现有业务,如果数据稍大一些,还可以处理MySQL主从同步读写分离。
但是,随着数据的增加,主从同步无法忍受,需要数据库的子库表,但子库表后面需要标识数据的唯一ID。数据库的自增加ID显然不符合要求。订单、优惠券等特殊之处也需要唯一的ID。此时,需要能够生成全局唯一ID的系统。然后,此全局唯一ID称为分布式ID。
2、分布式ID需要满足什么条件?
全局唯一:必须确保ID在全局上是唯一的。基本要求高性能:高可用性低延迟、身份生成响应速度,否则业务瓶颈高可用性:100%可用性具有欺骗性,但必须无限接近100%可用性。良好的访问:应根据开箱即用的设计原则,尽最大努力设计和实施系统。
今天主要分析以下九种分布式ID生成器方法及其优缺点。
UUID数据库自增加ID数据库多主模式编号段模式redis雪花算法(SNOW FLAKE)TINYID(TIID)BAIDU(UID GENERATOR)LEAF是如何实现的?还有,各自的优缺点是什么?让我们看看下面。
上图来自网络,如果有侵权联系删除的话。
1、基于UUID
我认为,要想在Java的世界中获得唯一的ID,首先可以成为UUID,毕竟它具有世界上唯一的特征。那么UUID可以创建分布式ID吗?答案是肯定的,但不推荐!
public static void main(string[]args){
Stringuuid=uuid.randomuuid()。tostring()。replaceall ('-',' ');
sy(uuid);
}UUID只生成一行代码,输出C2B 8C 2B 9E 46C 47E 3B 30 DCA 3B 0D 44718,但UUID不适用于实际业务需求。订单编号UUID等字符串毫无意义,无法查看与订单相关的有用信息。数据库中用作业务密钥ID不仅太长或字符串,而且存储性能下降查询也很耗时,因此不建议将其用作分布式ID。
好处:
生成足够简单,本地没有网络消费,有自己的缺点。
无序字符串、趋势本身没有增长特征没有具体的业务意义长度为16字节128位、36位长的字符串、存储和查询对MySQL的性能消耗较大的情况下,MySQL当局认为主键越短越好。数据库主键UUID的不连续性会导致数据位置频繁更改,并严重影响性能。2、基于数据库自增长ID。
基于数据库的auto_increment自递增ID需要生成ID的单独MySQL实例,表结构如下:
CREATE DATABASE ' seq _ ID ';
CREATE TABLE SEQID。SEQUENCE_ID(
id bigint(20)unsigned not null auto _ increment、
Value char(10) NOT NULL default ' '、
主密钥(id)、
)ENGINE=MyISAMinsert into sequence _ id(value)values(' values ');需要ID时,在表中插入记录以返回主键ID,但此方法有一个相对致命的缺点。如果访问激增,MySQL本身就是系统的瓶颈,因此最好使用它来实现分布式服务风险。
好处:
简单的实现,ID单调的自我增加,数字类型查询速度缺点:
数据库点停机风险,高并发方案3,不能基于数据库群集模式保留
如上所述,单点数据库方式不可取。也就是说,对上述方法进行高可用性优化,将其替换为主从模式群集。大卫亚设,害怕成功。
一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?
解决方案:设置起始值和自增步长
MySQL_1 配置:
set @@auto_increment_offset = 1; -- 起始值
set @@auto_increment_increment = 2; -- 步长
MySQL_2 配置:
set @@auto_increment_offset = 2; -- 起始值
set @@auto_increment_increment = 2; -- 步长
这样两个MySQL实例的自增ID分别就是:
1、3、5、7、9
2、4、6、8、10
那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。
增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
优点:
- 解决DB单点问题
缺点:
- 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。
4、基于数据库的号段模式
号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:
CREATE TABLE id_generator (
id int(10) NOT NULL,
max_id bigint(20) NOT NULL COMMENT '当前最大id',
step int(20) NOT NULL COMMENT '号段的布长',
biz_type int(20) NOT NULL COMMENT '业务类型',
version int(20) NOT NULL COMMENT '版本号',
PRIMARY KEY (`id`)
)
biz_type :代表不同业务类型
max_id :当前最大的可用id
step :代表号段的长度
version :是一个乐观锁,每次都更新version,保证并发时数据的正确性
等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX
由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。
5、基于Redis模式
Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增。
127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id // 增加1,并返回递增后的数值
(integer) 2
用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF
- RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。
6、基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。
以上图片源自网络,如有侵权联系删除
Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。
Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
- 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
- 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L 60 60 24 365) = 69年
- 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。
- 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
Java版本的Snowflake算法实现:
/**
* Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
*
*
*/
public class SnowFlakeShortUrl {
/**
* 起始的时间戳
*/
private final static long START_TIMESTAMP = 1480166465631L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;
private long dataCenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastTimeStamp = -1L; //上一次时间戳
private long getNextMill() {
long mill = getNewTimeStamp();
while (mill <= lastTimeStamp) {
mill = getNewTimeStamp();
}
return mill;
}
private long getNewTimeStamp() {
return Sy();
}
/**
* 根据指定的数据中心ID和机器标志ID生成指定的序列号
*
* @param dataCenterId 数据中心ID
* @param machineId 机器标志ID
*/
public SnowFlakeShortUrl(long dataCenterId, long machineId) {
if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
}
= dataCenterId;
= machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currTimeStamp = getNewTimeStamp();
if (currTimeStamp < lastTimeStamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currTimeStamp == lastTimeStamp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currTimeStamp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastTimeStamp = currTimeStamp;
return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
| dataCenterId << DATA_CENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
public static void main(String[] args) {
SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);
for (int i = 0; i < (1 << 4); i++) {
//10进制
Sy());
}
}
}
7、百度(uid-generator)
uid-generator是由百度技术部开发,项目GitHub地址 ...
uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。
uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。
对于uid-generator ID组成结构:
workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。
参考文献
...
8、美团(Leaf)
Leaf由美团开发,github地址:...
Leaf同时支持号段模式和snowflake算法模式,可以切换使用。
号段模式
先导入源码 ... ,在建一张表leaf_alloc
DROP TABLE IF EXISTS `leaf_alloc`;
CREATE TABLE `leaf_alloc` (
`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',
`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;
然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式
leaf.name=com.
leaf.
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root
leaf.
#leaf.
#leaf.
启动leaf-server 模块的 LeafServerApplication项目就跑起来了
号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test
监控号段模式:http://localhost:8080/cache
snowflake模式
Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。
leaf.
leaf.127.0.0.1
leaf.2181
snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test
9、滴滴(Tinyid)
Tinyid由滴滴开发,Github地址:。
Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]
Tinyid提供http和tinyid-client两种方式接入
Http方式接入
(1)导入Tinyid源码:
git clone ...
(2)创建数据表:
CREATE TABLE `tiny_id_info` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
`begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
`max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
`step` int(11) DEFAULT '0' COMMENT '步长',
`delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
`remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
`version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
PRIMARY KEY (`id`),
UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';
CREATE TABLE `tiny_id_token` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
`token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
`biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
`remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
`create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
`update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);
INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
(2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
(2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');
(3)配置数据库:
da
da
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
da
da
(4)启动tinyid-server后测试
获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
返回结果: 3
批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
返回结果: 4,5,6,7,8,9,10,11,12,13
Java客户端方式接入
重复Http方式的(2)(3)操作
引入依赖
<dependency>
<groupId>com.xiaoju.uemc.tinyid</groupId>
<artifactId>tinyid-client</artifactId>
<version>${}</version>
</dependency>
配置文件
=localhost:9999
=0f673adf80504e2eaa552f5d791b644c
test 、是在数据库表中预先插入的数据,test 是具体业务类型,表示可访问的业务类型
// 获取单个分布式自增ID
Long id = TinyId . nextId( " test " );
// 按需批量分布式自增ID
List< Long > ids = TinyId . nextId( " test " , 10 );
总结
本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。