您的位置 首页 > 数码极客

【cad怎么画垂直线】初中数学初二上册:作垂线,利用角平分线的性质解答问题

示例1:如图所示,D、E和F分别是ABC的三个面点,CE=BF,DCE和DBF的面积相同。

求证:AD平分∠BAC

1、欲证AD平分∠BAC,我们有两种思路。第一种:证明∠BAD=∠CAD。第二种:证明点D到AB和AC的距离相等。

2、根据CE=BF,△DCE和△DBF的面积相等这两个条件,我们选择第二个思路。可以过点D作DH⊥AB,DG⊥AC,垂足分别为H,G。此时分别以CE和BF为底,△DCE的面积=½CE·D G,△DBF的面积=½BF·DH;所以DG=DH。

3、因为DH⊥AB,DG⊥AC;所以点D在∠BAC的平分线上,即AD平分∠BAC。

证明:

点D作DH⊥AB,DG⊥AC,垂足分别为H,G

∵△DCE的面积=△DBF的面积

△DCE的面积=½CE·D G

△DBF的面积=½BF·DH

∴½CE·D G=½BF·DH

∵CE=BF

∴DG=DH(等量代换)

∵DH⊥AB,DG⊥AC,DG=DH(角的内部到角的两边的距离相等的点在角的平分线上)

∴点D在∠BAC的平分线上

即AD平分∠BAC

例二:如图,AB=DC,∠A=∠D。

求证:∠ABC=∠DCB

1、本题条件非常简单,因为需要添加辅助线,所以本题难度稍高。由AB=DC,∠A=∠D,想到如果取AD的中点N,连接NB、NC,再由“SAS”可以证明△ABN≌△DCN,从而得到结论BN=CN,∠ABN=∠DCN。

2、如果能够证明∠NBC=∠NCB的话,我们就能够证明∠ABC=∠DCB。

3、我们再取BC的中点M,连接MN,则可用“SSS”证明△NBM≌△NCM,从而得到结论∠NBC=∠NCB。

证明:

分别取AD、BC的中点N、M,连接NB、MN、NC,则AN=DN,BM=CM。

∵N、M分别是AD、BC的中点

∴AN=DN

BM=CM

在△ABN和△DCN中

AN=DN (已证)

∠A=∠D (已知)

AB=DC (已知)

∴△ABN≌△DCN(SAS)

∴BN=CN (全等三角形的对应边相等)

∠ABN=∠DCN (全等三角形的对应角相等)

在△NBM和△NCM中

BN=CN (已证)

BM=CM (已证)

NM=NM (公共边)

∴△NBM≌△NCM(SSS)

∴∠NBC=∠NCB (全等三角形的对应角相等)

∵∠ABC=∠ABN+∠NBC

∠DCB=∠DCN+∠NCB

∴∠ABN+∠NBC=∠DCN+∠NCB(等量代换)

即∠ABC=∠DCB

小结:

证明两角相等的常见方法有:

1、同角(等角)的余角(补角)相等

2、平行线的性质

3、对顶角相等

4、全等三角形的对应角相等

5、角平分线的定义

关于作者: admin

无忧经验小编鲁达,内容侵删请Email至wohenlihai#qq.com(#改为@)

热门推荐