关于对数均值不等式证明过程,对数均值不等式证明什么这个很多人还不知道,今天菲菲来为大家解答以上的问题,现在让我们一起来看看吧!
1、证明过程如下:设f(x)=e^(x-1)– x,f’(x)=e^(x-1)-1;f”(x)=e^(x-1)。
2、f(1)=0,f’(1)=0,f”(x)>0,所以f(x)在x=1有绝对的最低值。
3、f(x)=e^(x-1)-x≥f(1)=0所以e^(x-1) ≥ x设xi>0,i=1,n。
4、算术平均值为a=(x1+x2+x3+…+xn)/n,a>0。
5、x/a ≤ e^(x/a-1)(x1/a)*(x2/a)*(x3/a)*…*(xn/a ) ≤ e^(x1/a-1) e^(x2/a-1)e^(x3/a-1)… e^(xn/a-1)=e^(x1/a-1+x2/a-1+x3/a-1+…xn/a-1)=e^[(x1+x2+x3+…+xn)/a-n]=e^[na/a-n]=e^0=1所以(x1/a)*(x2/a)*(x3/a)*…*(xn/a )=(x1*x2*x3*…*xn)/a^n ≤ 1即(x1*x2*x3*…*xn) ≤ a^n(x1*x2*x3*…*xn)^(1/n) ≤ a ,即算术平均数大于等于几何平均数。
6、扩展资料:关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:(注:在此证明的,是对n维形式的均值不等式的证明方法。
7、)用数学归纳法证明,需要一个辅助结论。
8、注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。
9、参考资料来源:百度百科-均值不等式。
本文到此分享完毕,希望对大家有所帮助。