【例题】
24.如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.
(1)用含α的代数式表示β,并直接写出α的取值范围;
(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.
图1
【涉及考点】切线的性质.
【解题分析】
(1)首先证明∠DAE=2α,在Rt△ADE中,根据两锐角互余,可知2α+β=90°,(0°<α<45°);
(2)连接OF交AC于O′,连接CF.只要证明四边形AFCO是菱形,推出△AFO是等边三角形即可解决问题;
【详细解答过程】
解:(1)连接OC.
∵DE是⊙O的切线,
∴OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAE=2α,
∵∠D=90°,
∴∠DAE+∠E=90°,
∴2α+β=90°(0°<α<45°).
(2)连接OF交AC于O′,连接CF.
∵AO′=CO′,
∴AC⊥OF,
∴FA=FC,
∴∠FAC=∠FCA=∠CAO,
∴CF∥OA,∵AF∥OC,
∴四边形AFCO是平行四边形,
∵OA=OC,
∴四边形AFCO是菱形,
∴AF=AO=OF,
∴△AOF是等边三角形,
∴∠FAO=2α=60°,
∴α=30°,
∵2α+β=90°,
∴β=30°,
∴α=β=30°.
图2
【总结】
这道题考查切线的性质、垂径定理、菱形的判定.等边三角形的判定和性质等知识,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型之一.
图3