在电子产品设计过 程中,电源通常是必不可少的部分,很多设备(尤其是使用电池的设备)的电源都是以DC-DC为主的。这些电源一般有三种拓扑结构,即人们熟知的buck、 boost和buck-boost(也叫inverTIng),分别用于降压、升压和反向。
但是,也有一些时候,我们需要的输出电压和输入电压相近或就在 输入电压范围内,这时候,单独使用上述这三种结构都无法满足要求。对此,有的人使用先降后升或先升后降的方法,但这会大大降低效率;还有一些公司开发出了 自动切换升压降压模式的芯片,但这样成本很高。有没有一种既高效又便宜的方法达到我们的目的呢?当然有,这就是SEPIC拓扑结构。
SEPIC电路的基本结构如下图所示:
该电路需要使用2个电感。开关管导通时,为L1和L2(通过C1)充电,负载由输出电容C2供电;当开关管截止时,L1的电流通过C1和二极管输出到输出电 容C2中,L2的电流通过二极管也输出到C2中;通过改变开关管的导通时间,可以改变输出电压。该电路的输出电压可以大于、小于或等于输入电压,而且在不 需要使用该电源的时候,中间的电容C1还可以起到隔离作用。
下面给出一个自己用过的电路图:
这个电路将三串锂电池的输入电压(9-12.6V)稳定在12V,使用的是TI的TPS40210芯片,该芯片不仅可以用于BOOST电路,也可以用于 SEPIC电路。这里使用的电感是一个共模电感,由于SEPIC电路中2电感的电压、电流是完全一致的,所以可以使用一个共模电感代替2个电感,这样不仅 可以降低成本,而且由于互感作用,只需要一半的电感量就够了。
SEPIC 电路还有很多用法,在这里就不多叙述,总之,该结构是一个有诸多优点的结构,只是研究的人比较少,资料比较少,更过妙用还需要大家共同努力开发。不过,该 电路也有一个致命的缺点。
小结:由于要靠中间的电容做储能元件,因此电路的功率不能做大,而且电路的性能跟中间的电容有巨大的关系。所以,在实际使用过程中,要 尽量选择低ESR、额定电流大的电容。
电子发烧友学院 | 硬件设计与开发第九部-反激开关电源设计
课程介绍
反激开关电源应用产品是每个从事电子相关工作的朋友最早最常接触的设计产品,最常见的如生活中各种充电器,正因为开关电源产品就在大家身边并与大家生活有着息息相关,影响着每个人的生活,所以大家并不陌生,便于入手,因此很多朋友出于工作兴趣更愿意从反激开关电源设计开始作为电子技术入门,所以学好它是自己成长关键的一步,也是建立电子技术兴趣关键的一步。
长按二维码或点击阅读原文
立即学习电源设计课程
↙↙↙点击“阅读原文”立即学习电源设计课程