大学新生数学知识点定理
希望对大家有帮助
有理数
乘法除法法
1.把两个数字相乘,同一个数字得到正数,另一个数字得到负数,再乘以绝对值。
0乘以任何数,都得0。2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为偶数时,积为正;负因数的个数为奇数 时,积为负。
3.两数相除,同号得正 ,异号得负 ,并把绝对值相除 。0除以任何一个不等于0的数,都得0。
4.有理数中仍然有:乘积是1的两个数互为倒数 。
5.除以一个不等于0的数等于乘以这个数的倒数 。
整式的加减
整式的概念
在做多项式的排列的题时注意:
(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
列代数式的几个注意事项
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;
(2)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式。
整式的加减运算
1.同类项的概念
如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。比如4y与5y,100ab与14ab,6c与6c。此外所有常数项都是同类项(常数项也叫数字因数)。
2.合并同类项
(一)合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变。字母不变,系数相加减。
(二)同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
3.整式加减实质就是去括号,合并同类项。
4.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(本式中2为平方)
(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1;
(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 (本式中2为平方)。
一元一次方程
一般来说,一元一次方程在应用题上的运用较多,主要分为以下几种题型:
a.和差倍分问题:这类问题主要是正确理解是几倍“增加了几倍”“增加到几倍”“多少”“大小”“不足“剩余”等关键词语的意义。
b.行程相遇问题:三个基本量的关系 路程=速度×时间
c.工程任务问题:三个基本量的关系:工作量=工作效率×工作时间
d.利润问题:利润=售价-成本=成本×利润率;利润率=利润÷成本;实际售价=标价×折扣率。
e.分配问题:例:某车间有22名工人加工生产一种螺栓和螺母,每人每天平均生产螺栓120个或螺母200个,一个螺栓要配两个螺母(建立等量关系的依据),应该分配多少名工人生产螺栓,多少名工人生产螺母,才能使每天生产的产品刚好配套?
f.水上航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度。
图形的认识
几何图形
1.有些几何图形的各部分不都在同一平面内,它们是立体图形。如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。
2.有些几何图形的各部分都在同一平面内,它们是平面图形。如线段、角、三角形、长方形、圆等。
点线面体
1.立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。
2.几何图形都是由点、线、面、体组成,点是构成图形的基本元素。
直线、射线、线段
1.线段:直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。
射线:将线段向一个方向无限延长就形成了射线。
直线:将线段向两个方向无限延长就形成了直线。
2.点与直线的位置关系
点p在直线a上(或说直线a经过点p);
点p不在直线a上(或说直线a不经过点p) 。
过一点可画无数条直线,过两点有且仅有一条直线。简述为:两点确定一条直线。
3.线段的中点:把一线段分成两相等线段的点。
两点的所有连线中,线段最短;
简述为:两点之间,线段最短。
两点间的距离:连接两点间的线段的长度。
线段的长短比较:(1)度量法;(2)叠合法
角
角的定义
定义1:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
定义2:角还可以看成是一亲射线绕着它的端点从一个位置旋转到另一个位置所成的图形。
角的表示方法
(1)用三个大写字母来表示
(2)用一个大写字母来表示,这个大写字母一定要表示角的顶点,而且以它为顶点的角有且只有一个
(3)用数字来表示角
(4)用希腊字母来表示角
角的度量计算
角的度量单位是度、分、秒。把平角分成180等份,每一份就是一度的角,记做1°
把一度的角60等分,每一份叫做1分的角,记做1,1度=60分(1°=60)
把一分的角60等分,每一份叫做1秒的角,记做1",1分=60秒(1'=60”)
角的分类
1周角=360°
1平角=180°
1直角=90
1周角=2平角1平角=2直角
锐角a(0<a<90°)
钝角a(90°<a<180°)
优角a(180°<a<360°)
角平分线
从一个角的顶点出发,把这个角分成相等的两个角的射线,这条射线叫做这个角的平分线。
余角和补角
余角:如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角。
补角:如果两个角的和等于180°,就说这两个角互为补角,即其中一个角是另一个角的补角。
两个基本定理:①同角(或等角)的余角相等。②同角(或等角)的补角相等。